LOCAL SMOOTHING FOR THE SCHRODINGER EQUATION ON A MULTI-WARPED PRODUCT
MANIFOLD WITH INFLECTION-TRANSMISSION TRAPPING

HANS CHRISTIANSON AND DERRICK NOWAK

ABSTRACT. Geodesic trapping is an obstruction to dispersive estimates for solutions to the Schrodinger equation.
Surprisingly little is known about solutions to the Schrodinger equation on manifolds with degenerate trapping, since
the conditions for degenerate trapping are not stable under perturbations. In this paper we extend some of the results of
[ ] on inflection-transmission type trapping on warped product manifolds to the case of multi-warped products. The
main result is that the trapping on one cross section does not interact with the trapping on other cross sections provided
the manifold has only one infinite end and only inflection-transmission type trapping.

1. INTRODUCTION

In this paper, we study the effects of inflection-transmission type trapping on local smoothing estimates for
solutions to the Schrodinger equation on a multi-warped product manifold. Inflection-transmission trapping on a
warped product manifold was introduced in [ ] by Christianson-Metcalfe as a semi-stable type of trapping.
The warped product structure allows the authors to separate variables and study an essentially one-dimensional
problem. The purpose of this paper is to continue that study into the context of a multi-warped product manifold
where the trapping can occur on different cross sections. This breaks the symmetry of the single warped product
manifold so that the problem is no longer a one-dimensional problem.

1.1. Multi-warped product manifold. The most familiar example of a warped product manifold is a surface of
revolution, which involves a defining curve revolved around a line. This means the defining curve is warping the
circle at each point to change the radius along the surface. The second most familiar warped product manifold is
R™ in polar coordinates. That is, R” = R, x S"~! together with the metric

g =dz? + 2%ggn-1.

Here we refer to A(x) = x as the “warping” function. Let A(z) : Ry — R be a smooth function satisfying
A(z) > 0for x > 0 and A(xz) ~ x near x = 0 and outside a compact set. Let M be a compact Riemannian
manifold without boundary. Then X = R, x M with the metric

g =da® + A%*(2)gum
is called a warped product with cross section M and warping function A(x). It is “Euclidean” outside a compact
set because A(x) = x outside a compact set, and it has one “infinite end” since we are only working with x € R
and A(xz) = x near z = 0.

A multi-warped product is a product of two or more cross section manifolds warped by different warping
functions. We will assume our manifold is Euclidean outside a compact set so that infinity looks like a compact
product manifold warped in the usual polar coordinates. In this paper, we will specialize to the case with only one
infinite end.

A multi-warped product manifold is defined as follows: Let M7, Mo, ... M be compact Riemannian manifolds
without boundary. Denote the corresponding metrics gar, , - - - , g, » and suppose they have dimensions nq, ..., ny
respectively. Let Ay, ..., Ay : Ry — Rsatisfy A;(z) > 0, Aj(xz) = x near z = 0 and outside a compact set. Let

X =Ry xM; x My x---x My
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with the metric
qg= da? + Al(l’)Zg]Ml + ...+ AN(:E)QgMN
Then X is a multi-warped product manifold with cross sections M7, ... M. It is Euclidean at infinity, since the
metric is
g =dx* +2*(gar, + -+ grry)
for x outside a compact set. The metric g takes the same form in a neighborhood of x = 0, so X is Euclidean near
0 as well. Observe that the dimension of X isny +no + ...+ ny + 1.

Many of these assumptions about the geometry can be relaxed in various ways without significantly changing
the analysis in this paper. It is also possible to study multi-warped product manifolds with two ends, which just
means the A;(z) are positive functions on R which equal |x| outside a compact set. We will study the Schrodinger
equation on such manifolds in a subsequent paper.

2. STATEMENT OF RESULTS

Let X be a Riemannian manifold with metric g, and let —A, denote the corresponding Laplace-Beltrami
operator. The Schrodinger equation on X is

@.1) {(Dt — Ay u(t,z) =0onR; x X,

(0, x) = up(x),

where v is in some reasonable Sobolev space. Here we use the convention Dy = %at. Our goal is to understand
how the geometry of X affects solutions to (2.1). In the following subsection we construct a multi-warped product
manifold with inflection-transmission type trapping.

2.1. Construction of the Manifold. In order to make the present paper as clear as possible, we specialize to the
case where there are only two cross sections, both circles.

We consider smooth functions A, As and constants Cy, Cy, C3, Cy, Cs, Cg, Cr7, Cg such that for j = 1,2,
Aj(z) = x for x near 0 and outside a compact set, A;(x) > 0 for z > 0, A’ (z) > 0,

Aﬂm:{aﬁ—m%m4+@,x~1

Cs—Caz’ T~ 2

and
r~1

1
A2 xr) = C5—Cgx’
2( ) {07(.'17_2)27”2-'—1 +CS7 T~ 2

where A} (z) = 0 if and only if z = 1 and A} () = 0 if and only if = 2. Here m; and my are positive integers.
The constants are needed to make sure such functions exist while maintaining that A%, A? have only one point
where the derivative is 0. We are also assuming that A} ?(z) is linear and decreasing near = = 2 and A, *(x) is
linear and decreasing near x = 1. A sketch of A; and A, are found in Figure 1.

Now let X =R, x S x S! be a half line crossed with two circles. Let § and w parametrize the circles, and let

g = da® + A3 (x)df? + Al(z)dw?,
making X a multi-warped product manifold.

Theorem 2.2. Let (X, g) be the multi-warped product constructed above. Suppose u solves (2.1) on X with
ug € S(X). Let m = max(my, mg). Then for each T > 0 there exists a constant C' such that

T
—3/2 2 2
@3 |l gt < Clluol?

Remark 2.4. Due to the quasimode construction in [ ] the estimate in (2.3) is sharp.
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FIGURE 1. The functions A; and As.

Remark 2.5. The estimate (2.3) expresses that locally in space and on average in time the solution w is 2/(2m + 3)
derivatives smoother than the initial data. Because of this, estimate (2.3) is called a local smoothing estimate. See
Subsection 2.2 for motivation and history of local smoothing type estimates.

Remark 2.6. Additionally, we state the result in the form listed because it follows naturally from the estimates
below. However, since up € S(X) we can commute with an appropriate psuedo-differential operator to get that for
any s,

T
M 5

Remark 2.7. The power —3/2 in the weight function is not optimal, but helps our computations later. We have
assumed ug € S to avoid any regularity issues, but a density argument can be used to extend this result to rougher
initial data.

Remark 2.8. We again want to emphasize that A? has an inflection point of order 2m; + 1 at z = 1, A2 has an
inflection point of order 2mo + 1 at z = 2 and that A; and A, give the Euclidean metric near z = 0 and when z is
large. We also make A; ? linear near = = 2 and A ? linear near # = 1 to make some of the computation easier.
However, we expect that this conditioned can be loosened and still give the same result.

2.2. Motivation and History. The Schrodinger equation is one of a large family of dispersive equations, which
are equations whose solutions propagate in a way that depends on the frequency of oscillation. Dispersive equations
have conserved quantities, often expressing that the mass or size of oscillations are preserved in time. For the
Schrodinger equation on R™, the H® norm of a solution is preserved in time. In other words, at any time ¢, the
solution has the same regularity as the initial data. The local smoothing effect for solutions to the Schrodinger
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equation expresses that, even though a solution to the Schrodinger equation has the same regularity as the initial
data, on average in time and locally in space the solution is 1/2 derivative smoother.

The local smoothing estimate for solutions to the Schrodinger equation on R™ is that for any 7" and any € > 0,
there exists a C' > 0 such that

T
/ )=/ g |20t < o2
0

This type of estimate has been studied in a number of different contexts with dispersive equations of varying orders
[ , , ]. These studies were extended to the case of non-trapping asymptotically Euclidean manifolds
in [ , ]. That trapping necessarily causes a loss in regularity was proved by Doi [ 1.

There have been a number of results about manifolds with trapping. If the trapping is unstable and non-
degenerate, the loss in regularity is logarithmic [ , , , , ]. Non-degenerate trapping
allows the use of quantum Birkhoff normal forms to have an invariant definition of hyperbolic trapping. If the
trapping is unstable but degenerate, normal forms are not available so the examples are limited. In [ ] the
authors show there is a local smoothing estimate with sharp polynomial loss. In [ ] the authors introduce
the semi-stable inflection-transmission trapping, further studied in the present paper, and demonstrate a local
smoothing estimate with sharp polynomial loss. In [ ], the author proves that unstable but infinitely degenerate
trapping causes a complete loss.

The intuition behind the non-trapping estimates is as follows: In R", if ug is sufficiently smooth, we can use the
Fourier transform to write down the solution:

u(t, ) = ey / uo(y)e ~HEF+E @) gy ge

where c,, is a dimensional constant. Restricting our attention to R?, the solution has phase function —t£2 + & (x —y)
which is stationary when —2t£ 4 (x —y) = 0, or x = y + 2t£. This means that a solution at frequency £ propagates
at speed 2¢€. This has the effect that a solution leaves a compact set in space in time ¢ ~ £ ~!. Then integrating the
H*(R?) norm in time gains £ ! over |£|?*|4|?, or 1/2 derivative on each copy of the solution .

We also see from this heuristic that solutions propagate along geodesics in the sense that they follow straight
lines as they propagate out to infinity. The same is true on manifolds, as long as all geodesics go to infinity. This is
why trapping plays such an important role in local smoothing estimates. When trapping occurs, wave packets can
stay coherent near the trapping which means that our R? heuristic does not work any more, and we expect some
loss in regularity.

2.3. Overview. On a warped product manifold X = R, x M with metric ¢ = dx? + A%(z)ga, the Laplacian is,
up to lower order terms,

~A=-92-A%(2)A

gMm -

Let {¢j(w)} be the orthonormal basis of L?(M) consisting of eigenfunctions:

_AQZM Pj = )‘?@J

Then if f : X — C is sufficiently smooth, we can separate variables:

fla,w) =Y fi(@)p; ),
so that, up to lower order terms,
—Af =) (=1 + AT @) )

On each eigenspace then one considers the operator —9? + )\?A*Z(z). Rescaling h = )\j_l, we are led to
consider the operator P = —h292 + V (z), where V (x) = A~2(z). The corresponding (semi-classical) symbol
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is p = €2 + V(z). In this reduced geometry, the replacement for the geodesic flow is the Hamiltonian flow, and
solutions propagate along this flow. The Hamiltonian system for this symbol is then

i =2,
£=-V'(x),
x(0) = xo,
£(0) = &o.

If V' () = 0, then (x, &) = (w0, &) is a “trapped” solution. This corresponds to a longitudinal periodic geodesic
on the original warped product.

The question of local smoothing with loss then boils down to understanding what happens to solutions of
the one-dimensional semi-classical problem near critical points in phase space. This necessitates use of second
microlocalization to get sharp estimates. This analysis was done in the papers [ ] with degenerate unstable
trapping, [ ] for inflection-transmission type trapping, and in [ ] for infinitely degenerate critical points.
The present paper is a continuation of this series of papers.

The motivation is to see how different kinds of trapping interact at different frequencies in a relatively simple
geometric setting. Our main result, however, is that the trapped sets on each cross section do not see each other, so
the loss in local smoothing is the same as in [ ].

Nevertheless, there are a number of things to prove. Having a product of two compact manifolds as cross
sections, one can separate variables on both cross sections. Then one is led to study a one-dimensional problem
with two frequency parameters. This appears to be a complicated mess comparing different frequencies. However,
we can separate variables in one cross section alone, which leaves us with a two-dimensional problem with one
parameter. Since we are only separating variables in one direction, we do have to deal with derivatives in the other
direction. However, a detailed microlocal frequency localization allows us to handle this problem. The fact that the
trapping on one cross section does not see the trapping on the other cross section is special to the one ended case
and not expected to hold in general.

3. LOCAL SMOOTHING AWAY FROM THE TRAPPING
Now that we have A; and A, defined, consider the product manifold R, x S! x S! with the metric
g = dz? + Ay (2)*d6* + Ay(z)*dw?.
Then, the laplacian is given by
Ay = O+ Ay () 208 + Ax(2) 202 + (A4(2) AT (2) + Ah() A7 (2))0,

Next we use a transformation to get rid of the 9, term. Consider the unitary tranformation 7 : L*(X,dV,) —
L?(X,dxdfdw) given by
Tu= Ai/z(m)Aé/z(x)u

and set
A=TA, T
This gives
A=02+A%07 + A% ()02 + V(2)
where

1 / 2 —2 1 " —1
V =141 @) A (@) = A (@) AT ()
1 / — 1 " —1
+ 3 A5(@)* Aa(2) 2 = S A3 (@) A5 (@)

— S AL ) Aal) AL () A5(0).
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This V is similar to the single warped product case except we have a cross term of
1
3 A1(@) 7 s (2) T AL (2) A ().

Next we want to do a positive commutator argument to get local smoothing away from x = 1,z = 2. Let u be
a solution to (D; — A)u = 0. Notice that A is of a similar form to [ ]. Let us take B = f(x)d, for some
general f € C%(R) such that f, f/, f” are all bounded and then we will reduce to a specifc case.

(A, B] =2f(2)92 + f"(2)0,
+ 245 AT f ()05 + 245457 f(2)92 + V (2) f ()

<u7v>:/ //u@dmd@dw.
Ry Jst Jst

iB — (iB)" = i[f(x), ds].

Remark 3.1. Note that

and that

Hence,

u(f(x)Dy(Dy — A)u)dzdfdwdt

iB) )u((Dy — A)u)dzdfdwdt

/R
_ /0 ! / F(2)(Dau)(Ds — A)u)dadfdwdt
Jus-

T
= i(f(x)Dyu, u)|d + / ((Dy — A)i™* Bu, u)dt.
0

This follows from integrating 0;({f(z)D,u,w)) in ¢, using Dyu = Aw and integrating by parts. It is the same
computation as [ ] and the next step in the paper follows through as well. Using the notation that P = D, — A,

T
0=2i Irn/ (i "' BPu,u)dt
0
T T
:/ <1‘71BPu,u>dt7/ (u,i” ' BPu)dt
0 0

T
:/O (i1 B, P, u, u)dt — i(f(z)Dyu, u)|T.

Since B is independent of ¢ this gives

/0 (B, — AJu, uydt = —(f () Dy, )7

Let us reduce to the specific case of a function f(x) given by the followmg let ¢(x) be a smooth function
satisfying ¢(z) = 1 near 2 = 0, ¢(z) > 0 for all z, and |¢(z)| ~ (z) > for large x. Such a  is integrable, so let

@ = [ o

Then f(x) = x near z = 0, and there exists a constant ¢ > 0 such that f’(z) > ¢ (z) > for # > 0. The power —3
here is much bigger than needed, but we have chosen it so that our computation are easier. We simply are matching
the power of each A;?’ ~zx 3asx = oo.
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The restriction that f(x) is linear near = 0 is just to maintain all the properties of Euclidean polar coordinates
near x = (. Integrating by parts yields

T
/ 2 (@)Dat, D) — (2AL AT F(2)Dgu, D) — (244 A5 (), Do)t
0

T
— (@) Dy, )] + / () Oy, ) — (V' () (),

Let us quickly remark again that, since each A;(xz) = « for « near 0 and f(z) = « for x near 0, we have

—3 . —92 o / . _ . .
A;"(z)f(z) = 27 near z = 0. We also have V’(z) = 0 near x = 0, so all terms agree with the corresponding

Euclidean terms near z = 0.
Taking the absolute value of both sides and noting that f/, A A7 f(x), and A, A5 f(x) > 0 yields

T
/ IV/2f/(2)0zullZ + 1/ 245 AT £ (2)Opul 2 + |11/ 245457  (2) Dl 72t
0

T
< Oy (D, u)|T] + / Col (@t )| + Cg| (s, )t
0

Note that each term on the RHS is bounded by C||ug|| ;71,2 for some constant Cr. Next, we want to provide

lower bounds on the \/2f'(x), /2A, A73 f(x), and y/2A5 A5 3 f () terms.

First we want to bound the 92. Note that f’(x) = ((x) defined above, so there exists a positive constant ¢ > 0

such that
IV/2f! () 0zull7 > cl|(z) ">/ ?0pul|3.

To get the correct lower bounds for the /24 A7 f(z), and 1/2A% A5 ® f () terms we will have to estimate
AYAT? and AL AP,

3.1. A; and A, estimates. We have that

A3(x) ~ Ci(zx—1*™mH 4+ 0y, z~1
=, x away from 1

So,nearx =0

_ 2mq
f(.’L‘)All((E)AIS(LL') = ;12 2 Cl‘2<1x>1 2 Ca(jf<x>}2r2m1
Nearx =1 ) )
e (x —1)>™ (z— 1)
f(z)Al(z) A 3(95) ~ 1+ (x— 1)2m1+1)3/2 2 Csc2<x>1+2m1

When z is large
_ 1 1 (x —1)%m
/ 3
F@)dy(z) A (@) ~ i O$2<x> = 22 (z)1+2m
Now just to be careful, we can consider compact sets [¢, 1 —¢] and [1 +¢, K] for K sufficiently large and £ small
to handle the situation where we do not know the exact form of A%?. We know that on this region f(z), A} (x) > 0
so we can find C' > 0 sufficiently small so that

(x _ 1)27711
CCQ <m>1+2m1

f(@)A () A3 () > C rele,l—¢clU[l+e K|

With As(x), the only difference is the inflection point is at = 2 and we replace m; with mq. This does not
change the qualitative behavior of the estimates. We just need estimates near = 2 instead of x = 1 and we will
get (z — 2)>™2 in the numerator instead of (z — 1)?™2. This proves the following Lemma:
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Lemma 3.2. Let u be a solution to (2.1) on our manifold X with initial data uy € S(X). Then for each T > 0,
there exists a constant C > 0 such that

T
]ﬁ (Il (@)™ Bpull? + [ (x = 1)™ (@) 727" AT Dpu”

(@ = 2)™ () T Ay G ?)d
(3.3) < ClluolFa/2(x)-
Remark 3.4. The estimate (3.3) expresses that there is perfect local smoothing in the radial = direction with a loss

at the trapped set on each copy of S*. It is also clear that the statement of Theorem 2.2 could be sharpened to have
loss only in 6 and w derivatives. However, we have stated the theorem in the simplest possible way to be clear.

4. SEPARATION OF VARIABLES

Consider the operator Py = Py + V (z) = =02 — V107 — V202 — V (x) where V; = A7 and V() contains
derivatives of A; as shown above. Define a function ¢(z) € C2° such that 0 < ¢(z) < 1, p(z) = 1, on
x€[l—g,14¢]forl/4>e>0andsupp (¢) C [l — 2¢,1+ 2¢]. Since we have local smoothing away from
x = 1 we can localize near this point. We do this now so that we can define a Fourier transform properly and do
not have to worry about any integrability issues near x = 0 due to the metric.

Now separate one variable at a time, starting with 6. Write

u= Zuk(t,x,w)eike, ug = Zuoyk(x,w)eike.

Then each uy, satisfies:
(Di + P = V)((pu)r) = 2¢' () Opur, + ¢" (x)uy,
where
P, = —02 + k*V; — 102,

Note that ', ¢ are compactly supported away from z = 0 and x = 1.

Below we will drop the subscript £ for notational purposes. Now we want to decompose the frequency into
high and low angular frequency parts. The high frequency part is when the frequency in the 6 direction is large
compared to the frequency in the « direction. Consider an even bump function ¢ € C&°(R) which is 1 for |r| < e
and vanishes for |r| < 2¢ for £ > 0 small. Define

uni = Y(Dy /) (pu), uo = (1 —¥)(¢u).

Since ¢ provides a cutoff near x = 1 and away from zero, we can define ¢)(D,./k) in the usual way.
Now using the definition of uj, and the fact that D;u = —(P, — V')u we get that.

(Dt + P = V)uo = [Py — V., (1 — ¥)gp]u
= (1= 9)[-02, olu + [k*Vi — V102 — V, =] (¢u)
= (1—¢)(=2¢'0, — " )u+ [K°Vi — V, =] (pu) + [-V202, —](pu)
= (1—)(=2¢'0; — " )u+ kLi(pu) — %Lg@i(cpu)

Here L and L, are semi-classical pseudo-differential operators (with parameter |k| 1) of order zero with wavefront
set contained in {¢'(§/k) # 0} C {e < |€]/]k| < 2¢}, so we observe | D, | ~ |k| on the wavefront set of L; and
Ly. We will use this shortly. Now combining the above statements gives

1
(D¢ + P, — V)u, = kL1 (ou) — ELg@f,(gou) — (1 =) (20" Opu + "' u).
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We now run the commutator argument, but insert a cutoff x;(z) with x; = 1 on supp () near x = 1 and
x1 = O near x = 2. Let us also assume that X}/ ? is still smooth. Then with B = f ()0, as before, recalling that

f'(x) = ¢(),
T
4.1 / <X1[Dt + P — V, B]U]O, U10> dt
0
T
— [ (260002 - IV ) 4 V(2002 0 )

T
+ / <X1(—f//($)8x + fV’)ulo, ulo> dt.
0

The last line in (4.1) has only one x derivative, so is bounded as follows:

< CrlluollF/z(x)-

T
/0 (1 (— £ ()00 + V" Yo o) dit

The 9?2 term in the second line of (4.1) is further estimated as follows: we know that for j = 1,2, V/(z) < 0and
our function f > 0, so

T
/ (Vi (@), ) dt
0

T
= _/ <X1‘/2/f(x)8wu107awulo> dt
0
> 0.

We also know that —x1 fV{ > 0, so that
T
| G0 (-26(0)02 = VY $0) + V3 ()02 )t ) e
0

T
“4.2) > / (=2x1¢(2) D20, wo ) dt.
0

The next issue is to observe that V; (1) = 0, so does not help us eliminate the vanishing at x = 1 in (3.3).
However, we observe that on the wavefront set of uy,, we have |k| < | D], so we want to use the Garding inequality
to estimate & in terms of D,. Recall that x; V] f < 0 and has compact support so the Géarding inequality implies
there exists a constant C' > 0 such that

<k2X1ulm Ulo> <-C <C($)83U107 Ulo> + O(l)”UloHipm(X)-
Combining this with (4.1) and (4.2)

T
/ {x1 (Ko ), uio ) dt
0
<-C <C(x)8§ulm u10> + O(l)”Ulonijl/?(X)
T
<€ [ Cal-200 ~ V) + V@02 e} + O ol o
0

T
=C [ QalDe+ Pe— V. Bluoy ) dt + Or (D)ol .
0

Rearranging and using energy estimates, we have

T T
@3 [ Gk b}t < Corlluol s+ C| [ GalDi+ P = V. Bluo, ) ]
0 0
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Now we unpack the commutator term fOT<X1 [D: + P, — V, Bluy,, ujo)dt. Integrating by parts yields,

T T
4.4) / (X1[D¢ + Pr, =V, Blujo, wio)dt| < 2 / (X1Buio, (D¢ + P, — V)uyo)dt
0 0

T T
+ / <Buloa 2X/18xulo>dt + / <Bu10a X/1/Ul0>dt
0 0

+

T
A <(Dt + P — V)ulo, (le)'ulo>dt

We will examine each line of this estimate separately. The key thing to observe is that, since B = f(z)0,,
the first line in (4.4) has the highest number of derivatives so will require the most work. The terms with just 0,
derivatives can be controlled by our initial estimate in Lemma 3.2. Hence, due to perfect local smoothing in the x
direction and energy estimates, we can bound the two terms on the middle line of (4.4):

T
4.5) + / (Buito, X uzo)dt| < Crlluo]%n -

0

T
/ <Buloa 2X/1 8aculo> dt

0

Now for the first and last line in (4.4) we want to use the fact that
1
(Dt + P, — V)uo = kL1 (pu) — ELgaf,(gou) — (1 =) (29" Opu + " u).

We can use the fact that ¢’ and " are compactly supported away from 0 and perfect local smoothing in the z
direction to get that

(4.6) < Clluol|3e

T
A<ﬂ1—w¢@u+ﬂ—¢wwmmﬁ%mﬁ

from the last line of (4.4), and

T
@7 /‘@u—w¢&u+u—w¢mw&mmtSCMﬂ;u
0

from the first line of (4.4), for some constant C'.

Next we want to handle the kL;(¢u) — §L202(pu) term coming from the last line in (4.4). To do this we
can use the fact that 1 and x| are supported away from = = 2 so that we have perfect local smoothing in the w
direction according to Lemma 3.2. Hence

1
< Cr=lluoll3 e

4.8
(4.8) %]

T/
/ <k_L283)(50u)7 (le)/ulo> dt
0

Now let ¢ be a smooth, even, compactly supported bump function with (s) = 1 on supp (¢(s)). Let X1 be a
smooth compactly supported function such that ¥1(s) = 1 on the support of y; but still supported away from
z = 0and z = 2. Then

V(D /k) L1 (D /k) = Ly + O(k|7),
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which gives

A (L (pu), (1) o) dit

/OT <)21k1/~1L11/~J(90u), (le)/ulo> dt

+ Crlluol 32

+ Crlluol| 32

/OT <>21kL11;(<Pu), (le)/z/;(gou)> dt

T
9) SC/IMmeMWﬁ+Gﬂwﬁm~
0

Combining (4.6) with (4.8) and (4.9), we estimate the the last line in (4.4):

T
/0 (Di + Pe — Vyuto, (x1 f) i)t

T
“10) SC/IWWWWMWﬁ+Gﬂm%m-
0

We now proceed with the first line in (4.4). We have already estimated the lowest order parts in (4.7). We will
deal with the term with L last. That means we need to estimate

T 1
/ <X1Bulo, kL285(@u)> dt
0

The difficulty is that there is one = derivative in B and two w derivatives. We expect the 1/k to essentially remove
one derivative to use Lemma 3.2 away from z = 1. However, this requires some careful observations.

Since the wavefront set of Ly is contained where ¢’ # 0, we have | D, /k| ~ £ > 0 on the wavefront set of
1’. Recall that ¥ is a bump function satisfying ¥; = 1 on supp x; but Y1 = 0 near z = 2. We also choose
a bump function 1 (r) satisfying ¢ (r) = 1 on supp ¢’ (r) but ¥ (r) = 0 near r = 0. The point is that then
(%) 41 (D, /k) is a bounded operator on L2.

Then

/ <X1Bulo, kfngﬁg(cpu» dt

T
= / <X1k1f($)3x1;1 (Dkx> 3wulo,>21L23wu> dt + O(kioo)/ [X10uull*dt
0
9.\ - Dy 2
(4.11) < C/ (‘ x1(z) (k) Y1 (k) O Uio
O

The operator
@) () 6o/

is bounded on L? and supported away from x = 2. Similarly, the operator Y Lo is bounded on L? and supported
away from x = 2. The O(|k|~°°) term has ¥10,,u, which is again supported away from = = 2. Lemma 3.2
guarantees perfect local smoothing in the w direction away from = = 2, so applying Lemma 3.2 to (4.11) yields

T
+|>Z1L23w(90U)||2> dt+0(k_°°)/ X1 ul|*d.
0

(4.12) ‘/<XIBU10ak_1L283;((Pu)>dt‘ < ClluollF/2-
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Combining (4.3) with (4.5), (4.10), and (4.12), we have

T T
/ <X1k2u107ulo> dt < CT”uO”%il/z(X) +C ‘/ <X1[Dt + P =V, B]ulm ulo> dt
0 0

T
< Orluolyz + C / (x2 Butto, kL1 (i) di
0

T
< Crlluol|3p. +C / <X1Bu10,>21ka1(s0u)> dt
0

T
< Crlluol2pya + C / |aDk Ly (pu)|Pde
0

T
(4.13) < CrlluslByors + € [ Iadk(ou)|at.
0
Finally, we observe that, since uy = 1 (pu), we have

lrexaun| < kX unill = [k (pu)]l + O)ul.

That means

T T
(4.14) / Fexaun[*dt < C/ 1kxat(pu)l*dt + Crlluol 7,2
0 0

According to (4.13), we can estimate the low frequency part of u in terms of a quantity similar to the high frequency
estimate (4.14). So for both wuyp; and wuy,, it suffices to estimate the high frequency part:

T
| Ikwidten Par
0
where Y is supported near x = 1 and 1]) has compact support.

5. THE HIGH FREQUENCY ESTIMATE

We use the F'F'* type argument employed in [ Jand [ ]. Let us drop the tilde notation and consider
functions x(x) supported near x = 1 and supported away from x = 0 and x = 2, as well as (D, /k) micro-
supported near 0. Let F'(¢) be defined by

F(t)g = x()(Dy/k)k e~ F=Vg,

it(Pk — 2

where e~ V) is the free propagator. We want to show that for r = 33 We have a mapping [ : L? —
L3([0,T])L?, since then

[E' " F (t)uoll 2 (jo,17);02) < ClIE' "uo|l 12
is the desired local smoothing estimate. We have such a mapping if and only if FF* : L?([0,T])L2 —
L2([0,T7])L2. We compute

T
FF* f(z,t) = ¥(Dy /k)x(x)k*" /0 e PN () (D, k) f (2, 5)ds,

and need to show that ||F'F*f||z22 < C|f||p2r2. Now write FF* f(z,t) = tx(v1 + v2), where

t
vy = k2T / =PV (2)(D, k) f (0, 5)ds,
0
and

T
vy = k27 / =PV (2)y(Dy k) f (, 8)ds,
t
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so that
(Dy + Py — V)vj = Hik* xy f,
and it suffices to estimate
l¥xvjllzere < Cllfllzere
Now taking the Fourier transform in time and using Plancheral’s theorem, we have that it suffices to estimate
XV p2r2 < C|lflp2re
but this is the same as estimating
x> (T £i0+ Py — V)" 'x¥ll 22 < C.
This means that for the operator P, defined above we can reduce the estimate to showing that
loxk?" (1 £i0 + P = V) "Xl 212 < C.
Let —z =7k 2and h = k~! to get
lx(=2 %00 + (hD2)? + Vi = B*Vad,y + V) ™ 'xhl| 12012 < C.

In particular we want to show that

4m+2

G.D I(=2 + (hD2)? + Vi = h*Va0, + h*V)x(2)$(hDy)pull7z > h#w || x(2)¢ (D) (¢u) [ Z--

So with the following lemma we can get the desired result.

Lemma 5.2. Fore > 0 sufficiently small, let ¢ € S(T*R) have compact support in {|(z — 1,&) < e}. Then there
exists C. > 0 such that

(5.3) (P — 2)p%ul|? > C.AUM+2/@mt3)) | ywy |2 2 e [C —e,C +¢]

where P = (hD,)? + Vi — h?V502 — h2V and p* denotes quantization in only the x and 9, directions and || - ||
denotes theL? norm in x and w coordinates.

Now when looking at the norm we absorb the 22V term to the right hand side of (5.3) since (4m+2)/(2m+3) <
2. We just need to deal with the —h2V20?2 term because

I((AD2)? + Vi)p®ul[7z > R 2/ Crad) gy,

by [ 1.

Now we very briefly summarize the commutator process as in [ ]. We define A, A; as follows: freeze
€0 > 0 and let

A(r) = / B0 4t Ay(r) = / ()" gy,
0 —00

For the remainder of the paper, we denote by x(s) a smooth, even bump function with x(s) = 1 for |s| < 6y
and support in {|s| < 241 }. Here 61 > € where € > 0 is as in Lemma 5.2. with compact support near 0 so that
x(2z — 1)x(&) microlocalizes (in the semi-classical sense) near = 1 and £ = 0. Just as in [ ], let h > h be
a second small parameter and let

a(z, & h, h) = A(E)A2(X — 1)x(z — 1)x(€)

where
N 1 - &
(h/h)e (h/h)P
Here
2 , B=1-—a.

a=—"
2mi + 3
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We now employ a similar commutator method to get a favorable sign on the V5 term. To somewhat ease notation,
let v = " u. We have that

(5.4) Clv|l||Pv]| = ([P, a"],v,v) = (z'[(hDgC)2 + V1, a%v,v) + (i[—hQVQ,aw]aiv,w

for some constant C'. The first term is exactly the same as in [ ]. We have assumed that V5 is decreasing
and linear near z = 1, so if € > 0 is sufficiently small, V3’ is supported away from the support of x(z — 1). In
particular, we have i[—V5, a*| = —h(Hy,a)", where

—Hy,a =Vy(2)0:a <0
on the wavefront set of v. Hence
((=Hy,a)"02v,v) = ((Hy,a)" d,v,0,v) > 0.
Plugging in to (5.4), this implies that
Clv|l[|Pv|| > (i[P,a*]v,v) > (i[hD2 + Vi, a"]v,v).

Hence, by the results in [ ] we have that
1 m m C/ —
[[v][ |1Pv]] = 5/1(4 TR/ |y |2 4 5h3 2| 0v]?

This completes the proof when separating variables in the € direction. Separating variables in just the w direction
is similar.
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