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ABSTRACT

Derrick Nowak: Local Smoothing of the Schrédinger Equation on a Multi-Warped Product
with Degenerate Trapping
(Under the direction of Hans Christianson)

Geodesic trapping is an obstruction to dispersive estimates for solutions to the Schrodinger
equation. In [CW13], Christianson and Wunsch prove a local smoothing estimate on a surface
of revolution with degenerate trapping. In this thesis, we look to extend this result to the case
of a multi-warped product with two infinite directions. A multi-warped product manifold
with one infinite direction was used in [CN22|, where a local smoothing result was proven for
inflection-transmission type trapping studied initially by Christianson and Metcalfe in [CM14].
We construct a multi-warped product with two infinite ends where each warped piece has
degenerate trapping at different points in the radial direction. In the inflection-transmission
type trapping case, the trapping in each warped direction did not interact leaving the trapping
at just two points in the radial direction. However, in this thesis, the trapping is complicated.
The projection of all trapped trajectories onto the radial direction after separating variables
will be a countable dense subset of points in the interval [—¢, ¢]. The main result of this thesis
is to show that while the trapping is more complicated, we gain the same local smoothing

estimates from [CW13] in each angular direction.
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CHAPTER 1
INTRODUCTION

A solution u of the Schrodinger equation on R™ with initial condition uy € . (R") is a
solution to the equations
(Dy — A)u(t,z) =0

u(0,x) = ug(x)

where D; = %at and . is that set of Schwartz functions defined in Definition 2.3.1. The
Schrodinger equation describes the wave formulation of quantum particles. In the form above
uo(z) would be an initial probability that a given particle appears at  and Au(t, x) is the
kinetic energy of the particle at (¢, x). The equation tells us that the evolution of u(¢, z) is
related to the kinetic energy and is the quantum analog for Newton’s second law. In R", a

solution to the Schrodinger equation is given by

1 ' —i —i
ult,z) = (%)n/ S, t£2/R ey () dyde

= e"Pug(x).

This gives an exact solution for ug € . to the equation and allows us to model free particles.
However, there is often a potential energy term V' (z). In this situation the Schrodinger

equation becomes

(Dy — A+ V)u(t,z) =0

u(0, ) = up(x).



In many cases of Schrodinger equations with a potential there is no known explicit solution,
so estimates are used to understand how solutions behave. Instead of having a potential
term, another way the Schédinger equation might be altered is by changing the underlying
geometry. We might want to study particles on a Riemannian manifold M without boundary

with metric g. In this situation the Schrodinger equation becomes

(Dy — Ag)u(t,z) =0

u(0,z) = up(x)

where A, is the Laplacian on M with metric g. The change in the geometry is similar to
adding a potential term. In this thesis, we will be able to reduce studying the Schrodinger
equation on a 3-dimensional multi-warped product into studying the Schrodinger equation on
R with a potential term.

The Schrodinger equation is a type of dispersive equation, which are equations with
solutions that propagate based on the frequency of oscillation. Specifically in the Schrodinger
equation case, waves propagate proportionally to the frequency of oscillation. Another
common dispersive equation is the wave equation, which propagates in the direction of the
frequency of oscillation, but has constant speed of propagation. In contrast, the heat equation
and other parabolic and elliptic equations are not dispersive equations and do not propagate
based on the frequency of oscillation. A main feature of dispersive equations is that the way
waves propagate governs how solutions evolve over time. On a Riemannian manifold, the
waves for dispersive equations propagate in the direction of geodesics, so the nature of the
geodesics is important to determining the behavior of dispersive equations. On R", since
the geodesics are straight lines, we should expect solutions to the Schrodinger equation to
spread out over time and go off towards infinity. However, if there are trapped geodesics
that do not go off towards infinity, then we should expect the solution to spread out slower
over time. This difference in the behavior of geodesics affects the regularity of solutions to

the Schrodinger equation locally in space and averaged over time. For example, a dispersive



equation with an initial condition concentrated near a trapped geodesic will disperse slowly
near this trapped geodesic and affect how quickly the solution will spread out towards infinity.
Since the Schrodinger equation conserves energy, we cannot have any global gain in regularity
in ©x however, we can analyze how regularity is affected locally in x over time. This type of
estimate is what we consider a local smoothing estimate. Specifically, if u is a solution to
the Schrodinger equation on R™ with initial condition ug € .(R™), then the local smoothing

estimate is of the form

T n
/o Z ()~ Bl T2 ny < Crrlluio][F1/2 gy
=1

where O > 0 is a constant dependent on 7" and (z;)~' = (1 4 x2)~'/2. This type of estimate
shows that over time locally u(t,z) gains 1/2 derivatives. The term (x;)~! localizes in space,
because (z;)~! — 0 as |z;] — co. The term (x;)~! is not optimal, but agrees with what is
shown in Theorem 3.2.1.

We will briefly provide a heuristic estimate for the existence of local smoothing estimates for
dispersive equations on R. A formal proof can be found in Section A.4. Consider the differential
equation (D; + D" )u(t,x) = 0 for m € N with initial condition u(0,x) = ue(z) € L (R)

where D, = 19, and D' = --07". Then, a solution to the equation will have the form

1 ; em
u(t,z) = %/R/Rel(x_y)fe_”g uo(y)dyd§.

Combining exponentials we see that

1 .
ltia) = o [ [ et ug(yydg

for the phase function

o= (z—y)§—t".

Rapid decay of oscillatory integrals says that the solutions will be concentrated where



Ocp = 0. A brief review of rapid decay of oscillatory integrals and stationary phase can
be found in Theorem A.2.1 and Theorem A.2.2 in the Appendix. More general results on
stationary phase can be found in [Zwol2|. Suppose that we have some initial condition
ug such that () is concentrated near & > 0 and ug(z) is concentrated near yo in some
interval I of length c. Since d¢p = (x —y) — mt€™ !, we have that dcp(t, x, yo, &) = 0 when
x = yo + mt&y . This implies that u(¢, z) is concentrated near o = yo + mt&) . Hence u
propagates at speed m&y' . When mt&* " > ¢, u(t, z) will be concentrated away from the

(m—1)

interval I. This means when ¢ > =&, u(t, z) will be small on /. Then roughly we will

get,

(m L))

T
/ / (D) =072 2t — / / (D)2 24z dt + small.
0 1

Using Plancherel’s theorem,

C&-O
/ /\ (m=1)/2,|2dzdt </
C

C£ (m—1)
/|<DI)(m_1)/2u]2dasdt
R
—(m—1)

[T [ g

R

Now, (£, ) is concentrated near &, so [€™D/24(¢, )| is roughly |£"™/%a(t, ). Thus,

(m—1)

/cgo /y &\ =124, §)|2d§dt<(]/ /|§(m /24 (t,€)[2dedt

<&MV IC sup { A a(t, €)*d¢}

te[0,7

= C sup {|lu(t, )|}
te[0,7

Due to the conservation of mass of solutions to dispersive equation,

[lu(t, )72 = [luol[72



for all t € R. Combining the estimates gives

T
/ /|<Dx)(m_1)/2u|2dxdt < C’||u0||%g.
o Jr

This heuristic shows that we should expect a local smoothing effect in R. Specifically, in
the Schrodinger equation situation m = 2, we should expect a gain of a 1/2 derivative. The
m = 1 case is the half wave operator, which has no local smoothing effect, and the m = 3/2

case is the water wave equation with surface tension, which gains 1/4 derivatives.

1.1 Brief History of Local Smoothing

Local smoothing estimates for the Schrodinger equation have been studied in many
different contexts. Local smoothing was first observed by Kato [Kat83] for the KdV equation.
Local smoothing of the Schrédinger equation and more general dispersive equations were
later studied by Constantin-Saut [CS88], Sjolin [Sjo87], Vega [Veg88|, Kato-Yajima [KY89],

and Journe-Soffer-Sogge [JSS91]. On R” there exists a Cr > 0 such that

T n
/o > i) Ol 72 @y dt < Crlluol[31/2n)-
i=1

This result was extended to asymptotically Euclidean non-compact manifolds where the
geodesic flow is non-trapping in [Doi96], [CKS95]. Doi also showed there must be a loss in
regularity if there is trapping. These results show that a gain of 1/2 derivatives in the local
smoothing estimate is the maximum and any trapped geodesic implies that the gain must be
less than 1/2. Local-in-space smoothing estimates for the Schrodinger equation on smooth
manifolds with asymptotic flatness conditions were extended to global-in-time estimates
in [RT07] and [MMTO08]. Work by Ralston [Ral71] implied that if the manifold has stable
trapping, then there can be no polynomial gain in derivatives. In contrast, work in [Bur04],
[Chr07], [Chr08], and [Dat09] showed that if the manifold has non-degenerate unstable

trapping, then there is a 1/2 — € gain in derivatives. There are many local smoothing results,



however, we are going to focus on extending the estimates on manifolds with degenerate
unstable trapping in [CW13] and [CM14]. In [CW13], the authors considered a surface of

revolution M = R x S' with metric

g = da3 + A(x)*do?

where A(x)? has a local minimum of order 2m, where m is an integer greater than 1. We say
that there is unstable degenerate trapping at the origin of order 2m. In this case, we gain
only 1/(m + 1) instead of 1/2 — ¢ derivatives. In [CM14], the authors extend the result from
[CW13] to the case of a surface of revolution where A(z)? has a local minimum of order 2m;
at x = 0 and an inflection point of order 2my + 1 at x = 1, where m; and ms are integers
greater than 1. There is degenerate trapping of order 2m; at x = 0 and we say that there is
inflection-transmission type trapping of order 2ms + 1 at = 1. They were able to show that
the gain in derivatives is the minimum of 1/(m + 1) and 2/(2ms + 3).

In [CN22], the author with Christianson followed a similar argument to [CM14] to show

local smoothing results for the multi-warped product manifold X = R, x S' x S! with metric

g(z,0,w) = do* + A (2)%d6? + Ay(x)*dw?

where there is inflection-transmission trapping at x = 1 in the 6 direction and at x = 2 in the
w direction. In this case, we saw that the trapping was isolated in each direction. If a geodesic
had non-zero initial velocity in both the # and w directions, then the geodesic was not trapped.
If there is inflection-transmission trapping of order 2m; + 1 at x = 1 in the 6 direction and
inflection-transmission type trapping of order 2ms + 1 at © = 2 in the w direction, then there
is a 1/2 gain in derivative away from the trapping. Overall we gain 2/(2m; + 3) derivatives
in the 0 direction and we gain 2/(2mq + 3) derivatives in the w direction. The trapping was
only at x = 1 and = = 2 allowing a positive commutator argument to isolate to the trapping.

In this thesis, we are going to prove local smoothing estimates for a multi-warped product



with two infinite directions. In this situation the projection of all trapped trajectories onto
the z-direction after separating variables is a countable dense subset of points in the interval
[—&, ¢]. However, due to the extra dimension, we will show that we gain the same result from

[CW13] in each angular direction. Let M = R x S' x S! with metric
g(x,0,w) = dz* + Uy (2)*d0* + U_(x)*dw?

where U are defined in Section 4. The main properties are that U;? have degenerate unstable
critical points of order 4 at +e respectively and that g(z,0,w) is Euclidean for |z| > 4. The

main result of the thesis is the following,

Theorem 1.1.1. Let M be the multi-warped product with Ay constructed in Section 4. Let
u be a solution to the Schridinger equation on M with initial condition uy € . (M). For

each T > 0 there exists a constant C such that

T
/0 142) a2 gyt < CltolZassgan

We begin by providing background on multi-warped products, the Schrodinger equation,
and pseudo-differential operators. We will define multi-warped products in Section 2.1 and
explain why they are a useful structure to study. Next, we will develop the necessary pseudo-
differential calculus in Section 2.3, which will include the two parameter calculus introduced in
[CW13]. Finally, we will explain the Schrodinger equation and why we study local smoothing
in Section 2.5.

We will then prove the result of local smoothing on R? to show the positive commutator
technique, which will play a role in the results discussed later in Section 3.3. We will then go
over the result in [CW13] in Section 3.3. This will include a discussion of the proof strategy.

Afterwards, we will discuss the result from [CM14] in Section 3.4.1. We will discuss
the first results on multi-warped products in [CN22] and explain why this result is more

straightforward than the result in this thesis in Section 3.4.2. Finally, we will build up from



the previous results to prove our local smoothing result on a multi-warped product where the
projection of trapped trajectories onto the z-direction after separating variables is a countable

dense subset of an interval rather than isolated to just two points.



CHAPTER 2
BACKGROUND

2.1 Multi-Warped Products

One of the simplest examples of a warped product manifold is a surface of revolution,
which is given by revolving a curve. In this situation we have a manifold M = I x S! with a
metric g = dz? + f(x)gs: for a function f(x) and interval I. At each point the metric on S!
is warped by a function dependent only on x. The other classic example of a warped product
manifold is R™ in polar coordinates. In polar coordinates R" = R, x S"~! together with the
metric

g = da* + 2% ggn1.

In this case the 22 term is considered to be the warping function for the metric on S*!, even
if the end result is Euclidean space.
The advantage of warped product manifolds when the warped manifolds are compact is

that we can separate variables. This is what leads us to introduce multi-warped products.

Definition 2.1.1. Let My, Ms, ... My be compact Riemannian manifolds without boundary.
Denote the corresponding metrics gar,, - - ., gay and suppose they have dimensions nq, ..., ny.
Let I be an interval on R. Let Ay,..., An : I — R satisfying Aj(x) >0 for all j=1,---,N.
Let

X=IxM xMyx---x My

with the metric

g= dz? + A1($)2gM1 +... 4+ AN(a:)QgMN.



Then X s called a multi-warped product manifold with cross sections My, ... My.

Remark 2.1.2. We will call the x coordinate the radial direction. When My, --- , M, are

S, we will call those the angular directions.

Definition 2.1.3 (Multi-Warped Product One Infinite Direction). Let My, My, ... My be com-
pact Riemannian manifolds without boundary. Denote the corresponding metrics ga,, - - -, Guy

and suppose they have dimensions ny, . ..,ny respectively. Let Ay, ..., Ay : Ry — R satisfying

Aj(x) >0 forj=1,--- ,N. Let

X:R+XM1XM2X"'XMN

with the metric

g f— dng + Al(x)ngl —|— e + AN($>2gMN

Then, X is called a multi-warped product manifold with one infinite direction. We will call X
Euclidean outside of a compact set and near zero if A;j(x) = x for x ¢ [a,b] for some positive

integers b >a >0 forj=1,---,N.

This is an extension of the polar coordinates situation in the sense that I = R,. This
type of manifold is used in [CN22]. We can also extend the situation where we have I = R,
so that the manifold has two infinite directions. The main result of this thesis is proving local

smoothing estimates on a multi-warped product with two infinite directions.

Definition 2.1.4 (Multi-Warped Product with Two Infinite Directions). Let My, My, ... My
be compact Riemannian manifolds without boundary. Denote the corresponding metrics

My, - - - 9uy and suppose they have dimensions ny,...,ny respectively. Let Ay, ..., Ay :

R — R satisfy Aj(z) >0 for j=1,--- ,N. Let

X:RXM1XM2X---XMN

10



with the metric

g =dz®+ Ay(2)’gm, + -+ An(T) gy -

Then, X is a multi-warped product manifold with two infinite directions. We will call X
Euclidean outside of a compact set if A;j(x) = |z| for |x| > C for some positive number C' for

j=1,---,N.

The multi-warped product in the thesis will be of the form M = R x S! x S! with a metric

g =dz? + A%(w)d@% + A%(;U)d@%

where A;(z), Ay(z) > 0 and |A4|, |A2| = |z| when |z| > C for some constant C.

2.2 Geodesics and Trapping

Let M be a Riemannian manifold of dimension n with metric g and let v: I — M be a
curve where y(t) = (x1(t), z2(t), -+ ,2,(t)) . Let g¥ denote the i, j-th entry of the dual of

the metric g. Then ~(¢) is a geodesic if and only if

d? - dx; dz;
SIS g k=1, n

dt? Gdt dt
t,j=1
where
1 0 0 0
] 2 Ek:{axigjk+ al'jgk 6xkgj}g

We will start by considering geodesics on a surface of revolution, since the geodesics can easily
be visualized. We will consider the manifold M = R x S! with metric g = dx? + A;(x)%d6?
where Aj(x) > 0. A trapped geodesic will be a geodesic of the form v(t) = (z(t), 0:(t)) where

there is a C' > 0 such that |z(t)| < C for all ¢.

Definition 2.2.1. A trapped geodesic (t) with initial conditions v(0) = x and 4(0) = & is

stable if there exists an ¢ > 0 such that if |(z,€) — (Z,€)| < € then the geodesic 5 with initial

11



conditions 7(0) = & and 5(0) = € is trapped.

For M we will have
oo, = —A1 A}, T7; = 0 for all other i, j.

The geodesic equation that governs x(t) is given by

dPx(t) (o

Notice from this equation that all periodic geodesics such that @(t) = 0 for all ¢ are at critical
points of A;. In the case of [CW13] and [CM14] these periodic geodesics are the only trapped
geodesics, however trapping can be much more complicated. A few examples of trapped
geodesics are shown in Figure 2.1. We can have periodic geodesics without a fixed x value.
For example, on a sphere all great circles are periodic geodesics. This type of trapping is
shown as the stable trapping in Figure 2.1. Stable trapping does not have to be periodic.
The defining characteristic is that a small change in initial conditions for the geodesic will
still result in a trapped geodesic. It is also possible to have non-periodic unstable trapped
geodesics.

We covered the geodesic equations in terms of the metric, however geodesics can also
be defined in terms of the dual of the metric. Let M be a Riemannian manifold with
local coordinates 1, - - - T,,, metric g;; and inverse metric g”/. Note that we can view a point
&dry + -+ 4+ &da, in TEM as (x,8) = (1, , 20, &1, -+, &), Given (x,€) we define the

Hamiltonian H(x,§) = ZZ,b:l %g“b(x)ﬁafb. Then, the Hamiltonian flow is given by

- ag Z gab

. 1agbc
b= axa = — Z ~Gke

12



Stable trapping

Non-Periodic Trapping

Degenerate
unstable trapping
A'=0

Non-degenerate
unstable trapping
A"#0

Figure 2.1: Examples of Trapped Geodesics

where &, = %xa. In the case of the surface of revolution above, the Hamiltonian flow is given

by the following equations,

P=

61 = A%,

£, = 040,
£, = 0.

Using &,(t) = i(t) and &, (t) = A26; gives

d*x .

13



which agrees with (2.2.2). The advantage of looking at geodesics in terms of Hamiltonian flow
is that flows are deterministic. Additionally, we know that the Hamiltonian is preserved by
the flow. This tells us that geodesics live on projections of level sets of the Hamiltonian. Note
that égl = 0 for geodesics on a surface of revolution. We can take &, = 1, since if &, =0,
then |¢,| > 0 which would give a non-trapped geodesic. Then, the Hamiltonian becomes
H(z,01,&,,&,) = & + A% Notice that the value of #; does not change the Hamiltonian, so

we can plot the Hamiltonian as level sets in the variables x and &,.

14



Degenerate
Unstable

Non-Degenerate
Unstable

Figure 2.2: Graph of A;(x)

Consider A; given in Figure 2.2, which has a local minimum at x = —2, a local maximum
at * = 0 and a local minimum at x = 2 such that A7(2) = A{"(2) = 0. Note that the Hamilto-
nian is determined by A;?. The point z = —2 will have non-degenerate unstable trapping, the
point x = 0 has stable trapping and the point x = —2 will have degenerate unstable trapping.

We can observe this behavior in the plot of the level sets of the Hamiltonian given in Figure 2.3.

15



A

Figure 2.3: Level Sets of the Hamiltonian

Notice that at z = —2 if £, # 0, then the trajectory will go to +oo. Similarly, if we
start at a point near x = —2, but not equal to x = —2 the trajectory will go to 00 even
if £,(0) = 0. This is an example of unstable trapping at + = —2. Notice that near x = 0
level sets are closed curves. This means near z = 0, every ray will be trapped. If (z,¢,) is
within a small neighborhood of (0,0), then the trajectory with those initial conditions is still
trapped. This is an example of stable trapping at = 0. Note that near x = 2 the level sets
are similar to those at x = —2. We have unstable behavior. However, the stable and unstable
manifolds approach the point x = 2, £, = 0 tangential to each other. This is a way to see
degenerate trapping. The issue with this is that it precludes any sort of normal form and

that the trajectories near the degenerate point will move towards infinity at a slower rate.

Remark 2.2.3. We discussed the trapping in terms of x, since the value of 61 does not

16



change the Hamiltonian. However, if a geodesics v(t) = (x(t),01(t)) is trapped with initial
condition z(0) = xq,01(0) = by, #(0) = &,61(0) = &, , then the geodesic 7(t) = (Z(t),0:(t))

with initial condition x(0) = ¢, 61(0) = by, £(0) = &, 01(0) = &, is trapped for any 6, € S'.

Now we will consider the multi-warped product case. Let M = R, x S! x S? with a metric
g = dz’® + A}(z)d0; + A3(x)db;

where A;(z), As(x) > 0, A;(x) has a critical point at x = 1, Ay(x) has a critical point at

r =2 and 0,(A;?),0,(A;?) < 0. In this situation
[5.0, = —A1AY, T4, = —A2A5, T, = 0 for all other i, .

Let v(t) = (z(t),01(t),02(t)) be a geodesic on M. Then,

d2x(t) (o (O, ?
i ‘A&(ﬁ>‘Aﬂ4aﬁ-ﬂ-

In terms of the Hamiltonian flow

P=¢
61 = A%,
02 = A3,
£ = — 5 (0,048, + 0,(A))E)
£g, = 0
€9, = 0.

Notice that & > 0. If the Hamiltonian flow has initial condition £,(0) > 0, then the
trajectory is not trapped as t — oo. Furthermore, if £,(0) < 0, then the trajectory is not

trapped as t — —oo. This implies the only possible trapped trajectories must have initial
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condition &,(0) = 0. If both &,, &, > 0, we know &,(0) > 0, since the critical points for A;>
and A;? are at different z-values. Hence, any trajectory with initial condition &, (0), &, (0) > 0
will not be trapped. Assume that &, (0) = 0. Then, &,(0) > 0 as long as « # 1. This implies
that the only trapped trajectories with initial conditions &g, (0) # 0, &,(0) = 0,£,(0) = 0 have
the initial condition x(0) = 1. Similarly, the only trapped trajectories with initial conditions
€p,(0) = 0,&p,(0) # 0,£,(0) = 0 will have the initial condition z(0) = 2. This analysis shows
that the trapping only occurs at x = 1 and = = 2 and it is isolated to the 6;-direction at
x = 1 and the @,-direction at x = 2. This is the trapping in [CN22].

Now let M =R x S' x S' with a metric

g = dx® + A%(x)d0? + A3(z)db3

where A;(x), As(x) > 0, Aj(x) has a critical point at x = —1, and As(x) has a critical
point at x = 1. Assume 9,(A;?) > 0 for < —1 and 9,(A;?) < 0 for z > —1. Assume
0.(A7?) > 0 for < 1 and 9,(A;?) < 0 for z > 1. Notice that for z € (~1,1) we have
that sign(A/(x)) # sign(Aj(x)) and that for « ¢ [—1, 1] we have sign(A}(x)) = sign(A5(x)).
Suppose &,(0) = 0 and z(0) € (—1,1) for initial conditions of for the Hamiltonian flow. Since
sign(A}(x)) # sign(A,(z)), we have that there exists initial conditions for &, and &y, such
that £,(0) = 0. Hence, there will be trapped trajectories for the initial conditions &,(0) = 0
and z(0) € (—1,1). This situation is what makes the trapping in this thesis different than
the case in [CN22]. Instead of being isolated to two points in z, the trapping is on a range of
x values. Additionally, a trapped trajectory can have non-zero velocities in both the 6, and

6, directions, unlike the manifold in [CN22].
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2.3 Pseudo-differential Operators

2.3.1 Classical Pseudo-differential Operators

We will be interested in pseudo-differential operators which are a class of integral operators.
The main class of functions we will apply pseudo-differential operators to are Schwartz

functions.

Definition 2.3.1. Let

S (R") = {f € C*(R™ |Va, B € N*, sup |2*D”? f(x)| < oo}

reR”™

denote the space of Schwartz functions on R™.

This class of functions is nice to work with because the integral operators we are interested
in are defined from . to . and .¥ functions are dense in L? functions.
For a multi-index o = (o, g, - -+ , )

1
Diu(x) = Z‘—angllDf:j s Dy, T, Th)

where |a] = ay + ag + -+ + «,. Note that

1

D2u(e) = s [ eeOetae)ag

for any multi-index a. In general, given a differential operator L =}, o, lo(z) D5, define

a(z,§) = Z|a\§k la(2)€". Then,

1

Lu(z) = @n)"

/ ¢S a(x, £)a(&)de.

We call a(z, ) the symbol of the operator L. We want to allow a wider class of functions for

a(z, &) than just polynomials in &; however, we would like the functions to behave similarly
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to polynomials as |{| — oo. This is the idea behind the definition of symbol classes.

Definition 2.3.2. Let m be a real number. The symbol class of order m on R™ is the set
S™R™) = {a(z,£) € C(R™ x R")| |8§0§a($,£)| < Co (&)™ VI for all multindices o, B}

where (£)° = (1 4 £2)3/2,

Definition 2.3.3. For a € C*(R*"), a = Ogm (1) if
\ajaga(az,fﬂ < Co (&)™ VI for all multindices o, B.

Theorem 2.3.4 (Theorem 18.1.6 in [H6r07]). If a € S™ and u € ., then

1
(2m)"

ofa, Djula) = oo [ e 9ala,gae)ag

defines a function a(x, D)u € .7, and the bilinear map (a,u) — a(x, D)u is continuous. One
calls a(xz, D) or Opl(a) a pseudo-differential operator of order m. We will call a(z, D) the

standard quantization of a(x,§).

Theorem 2.3.5 (Theorem 18.1.8 in [Hor07]). If a; € S™, j = 1,2, then as operators on ./
ay(z, D)as(x, D) = b(z, D)
where b € S™1™2 s given by

b(z,&) = e PvPriay(z,m)as(y, €)=t y—s- (2.3.6)
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If we calculate out terms in (2.3.6) we get

b(l‘7 5) - ei(D%Dn)al (1:7 77)@2 (yv 5) |n:§,y::€
1
= ay(z,&)as(x, &) + EDxal(x,ﬁ)Dgag(x,f) + Ogmy+my—2(1).
Since ay(x,&)as(x, &) = as(w,&)ay(x,€), we get the following corollary,

Corollary 2.3.7. Ifa; € S™, j = 1,2, then as operators on . we have [a,(x, D), as(z, D)| =
b(z, D) where b € Smtma2—1,

If a; or as is a polynomial in z and &, there are only a finite number of terms in the

expansion for b(z,§).
Theorem 2.3.8 (Theorem 18.1.9 in [H6r07]). If a € S°, then a(z, D) is bounded in L*(R™).
Corollary 2.3.9. If a € S™, then a(x, D) is a continuous operator from H® to H*™.

Proof. Suppose v € H*(R™). ||u|

s = ||Au||p2 where Au(z) = (D,)*u(z). Then,

la(z, D)u

gs-m = ||A"a(z, D)ul|rz = ||[AN*TTATATa(x, D)u||2 = ||A*A™a(x, D)ul| 2.

From Theorem 2.3.5, A~"a(z, D) = a;(z, D) for a symbol a; € S°. Using Theorem 2.3.8
gives

1A% (ar(z, D)u)llez < Cl|A%ul[rz = Cllu|

HS
for a constant C' > 0. O

Lemma 2.3.10. Let a(x,§) € S*(R™) be a symbol only dependent on &. Let f,g € H®. Then,

<CL(.’L‘, D)f, g> = <f,C_L(I, D>g>

This is a corollary of Proposition 2.3.20
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2.3.2 h-calculus

We will begin by developing the classical h-calculus and Weyl quantization as done in
[Zwo12] and then explain why there is a need for the two-parameter calculus. Note that we

will require 0 < h < 1. We will use the following symbol class for the h-calculus,
Ss(R™) := {a € C*(R*)] [0%a| < Cuh~%lel for all multi-indices al. (2.3.11)

Definition 2.3.12. For a € C®(R?™), a = Og, (k") if |0%a| < Counh™=%°l for all multi-

mdices «.

Let @ := h™'2x, € := h™1/2¢ and a,(7,€) := a(x,€). If a € S5, then
10%ay| = hV/?|9%a| < Cuhl®G=2),

Under this scaling we see that if § = %, there is no decay as h — 0. There are two issues
we want to work around here. We will want to look at the critical case to minimize gain in
orders of h as we take derivatives. Additionally, we will want to make this more general, so
that there is different decay depending on derivatives in x or £. To handle the difference in
decay depending on derivatives in « or ¢ we will use the scaling & := h™%z, é = h™7&, where
B+ v = 1. This will give a similar, but more general critical case where there is no decay as
h — 0. We will then introduce a second parameter, so that we can handle these critical cases.

Now that we defined symbol classes, we can introduce the Weyl quantization and semi-

classical standard quantization of a symbol.

Definition 2.3.13 (Quantization). The Weyl quantization of the symbol a € Ss is the

operator denoted a*(x,hD) or Op}’(a) acting on a function u € .7 (R"™) by the formula

a’(x,hD)u(x) = (27r1h)” /n /n e%@’y’@a(x —; y,§>u(y)dyd§. (2.3.14)
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The semi-classical standard quantization is the operator denoted by a(x,hD) or Op}(a) by

the formula

a"(z, hD)u(z) := (27T1h)n / ) / ) et 0 q (z, € ) uly)dyde. (2.3.15)

More generally for 0 <t <1 we define the operator Op}(a) by

1 i
a"(z, hD)u(z) := W/ / en T8 (tr + (1 — )y, &) uly)dydé. (2.3.16)
Th)" Jrn Jre
Note that Op}(a) = Op!(a) for h = 1.
Theorem 2.3.17 (Theorem 4.13 from [Zwo12]). If A = Opt (a;) for 0 <t <1, then

ay(x,€) = e IMPD g (z,€).

This gives us a formula to change quantizations. From the change of quantization formula,
we should expect that the Weyl quantization has many of the same properties as the standard

quantization.

Theorem 2.3.18 (Theorem 4.16 from [Zwol2]). If a € S;, then
a’(x,hD): S —

and

a’(x,hD) : S — S
are continuous linear transformations.

Theorem 2.3.19 (Theorem 4.23 [Zwol2]). Let a € S, then
a¥ . L*(R™) — L*(R™)

1s bounded.
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We have the following generalization of Lemma 2.3.10.

Proposition 2.3.20. Let a € §S. Then,

Op;(a) = Op1-(a)

for (0 <t < 1) and in particular if a is real then

a“(z,hD)* = a"(x, hD).

Proof. Let f,g € L. Then,

]

Now, that we know a“(x, hD) is a well-defined operator, we would like to know what

happens when we take the composition of two quantizations.

Theorem 2.3.21 (Theorem 4.18 from [Zwol2]). Suppose a € S5 and b € Ss. Let

atb(x,§) = ¢hAD) (a(x, §)b(,&))|y=zm=c-
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A(D) := %O‘(Dm,Dg, Dy, D,). Then, a#b € Ss and

a®(x, hD)b"”(x, hD) = (a#b)"(x, hD)
as operators mapping % to /. Furthermore,

a#b = ab + %{a, b}(x,§) + Os, (h*7%)

and

[a®(z, hD),b" (z, hD)] = %{a, b} (x, hD) + O, (h3172)), (2.3.22)

Remark 2.3.23. There are a few reasons why the Weyl quantization is useful. One reason is
that the Weyl quantization is essentially self-adjoint with respect to the L? inner product if the
symbol is real. This is not the case for standard quantization. Additionally, in the commutator
(2.3.22) the terms with even order of derivatives cancel out leaving only the odd terms. This
is why we get O, (31729 in (2.3.22) instead of O, (h*1=2)) for the semi-classical standard

quantization.

We will need a similar result to this to prove the main results of this thesis. The issue is
that we are dealing with a critical case, which means that the Og, (h*1~%) term turns out to
be Os,(hY). Since, there is no gain in h we cannot easily absorb the terms in the expansion
into the Poisson bracket term. This is why we introduce a second small parameter that is

gained, so that we can absorb the additional terms in the critical case.

2.3.3 Two parameter calculus

In this section we will introduce the two parameter calculus used to handle the marginal
h-calculus situations. This two parameter calculus was first introduced by Sjostrand and
Zworski in [SZ07] for the case of & = f = 1/2. Then, the two parameter calculus was expanded

to allow for o, f > 0 such that « + 5 =1 in [CW13].
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To start we need to define a new symbol class. For a € [0,1] and f < 1 — a, let

Sap " (R")

alpl+Bly
— {aecoo(R” x R™ x %) 1620 a(x, & b, )| < Cp k™™ m(Z) p 7<5>k hl}

Throughout this paper we will assume that h > h. Notice that if a, f = 1/2, then we are
in the critical case, where there is no gain in A when computing the terms of the composition
of two quantizations. However, we see that there are gains in l~z, which will allow us to handle
the additional terms beyond the Poisson bracket teerm in the expansion for the commutator
of two pseudo-differential operators. In this thesis we will specifically consider the case where
f=2and o =g,

If a € SE7™ and b € SE7™, then
w w w : k+k' m+m/ m+m’
Op}(a) oOpp(b) = Opj(c) WlthCGSa:g e

Additionally, we have the following lemma from [CW13],

Lemma 2.3.24 (Lemma 2.4 from [CW13]). Suppose that a,b € SOO Y and that ¢ = a® o b,

Then N
lr,6) = 3" L (ZAD)) ol by, Wlemycy + en(a,)

k=0

where for some M

|07en| < OphN T Z sup sup ‘Fa757p77(D)(A(D))N+1a(m,S)b(y,n)|

71 fra=ry (@EET*R™, (y,) ET*R™ |p| <M, peN*"

where

FOG/BvPF‘/(D) = (haa(x,y)7 hﬁa(g,n))pavl 872

(:8)

Notice that if a € 52’7%’0(R”) and b € S(R™) then,
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(0,6) =3 15 (FAD)) 4l O 1) myes

k=0

+ Ogooo (R max{ (h/h) N TV (h/p)NFDAY), (2.3.25)

,0,0
B

This gain in & terms allows us to absorb the high order terms that we could not absorb in

the past due to the lack of gain of powers of h.

2.4 Functional Calculus

We will review functional calculus, so that we can define the fractional Laplacian, the
Schrodinger propagator and Sobolev spaces on a manifold H*(M) for non-integer s. We will

follow the results presented in [RS81] and [LPG'19].

Theorem 2.4.1 (Theorem VIIL5 in [RS81]). Let A be a self-adjoint operator on a Hilbert
space H. Then, there is a unique map o from bounded borel functions on R to linear operators

on H, L(H) so that
a) ¢ is an algebraic x-homomorphism
b) ¢ is norm continuous, that is ||p(h)||z iy < |[P]]so

c) If AY = Mp, then &(f)p = f(A)e.

This theorem allows use to define e*2 used in 4.4.2 since f(r) = € is a bounded Borel
function on R. The functional calculus form is useful, however f(z) = x*° for 0 < s < 1 is not
a bounded function. Theorem 2.4.1 does not allow us to construct the fractional Laplacian in
this form. We will have to use another form of the spectral theorem.

To start we will define projection-valued measures.

Definition 2.4.2. Let Py, be the operator xo(A) where xq is the characteristic function on

the measurable set Q@ C R. Suppose the family of operators {Pqo} has the following properties:
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a) Each Py is an orthogonal projection
b) Pp=0,P ooy =1
c) If Q = UN_Q, with Q, N Q,,, =0 if n #m, then Po = s — limy_,o0 ZnN:I P,
d) Po, Po, = Po,ng,
Then, the family is called a projection-valued measure.

Fix A, an unbounded self-adjoint operator on a Hilbert space H. Let Py be the operator
Xa(A). From Theorem 2.4.1 we know this is a well-defined operator. Let ¢» € H, then
(1, Pa) is a well-defined Borel measure on R which we denote by d(, Py¢). In particular
{Pq} is a projection-valued measure.

Given a bounded Borel function g we can define g(A) by

(6, g(App) = / g, Py,

[e.e]

Theorem 2.4.3 (Theorem VIIL.6 in [RS81]). There is a one-to-one correspondence between
self-adjoint operators A and projection-valued measures { Po} on H, the correspondence being
given by

A= /OO Ad(, Pxy)

o0
This construction is more general than the functional calculus form. It allows us to define

A® for 0 < a < 1 for a positive operator A.

Definition 2.4.4.
= [ dw,p)

Taking A = —A, we can define non-integer powers of the Laplacian operator on a manifold.

Specifically,

Definition 2.4.5.
(—A) = / Xed(i), Pyo)



We take —A, instead of A, because —A, is a positive operator and the spectrum of —A,

is contained in the positive real line. Thus,

(—A) = / T d(, Pa)

As an example we will consider the case of A = —A on R". Note that the spectrum of —A,
denoted by o(—A), consists of ||, where ¢ € R with corresponding eigenfuctions e~%.
Recall we use —A, so that the spectrum is positive. Thus the projection valued measure is

given by
1

(2m)d (1, e*7)e' 7 de.

d(y, Peyp) =

So,
1
(2m)"

(—2)*u(z) = /Rd €] (u, ") e 7dg = FH([€]" F (u)) ().

This shows how in R”, (—=A)*2u = Op'(|£|*)u. In general, if we have positive self-adjoint
operators A and B such that A®* = B*, then we know that A = B.

Now to define the norm for H*(M) we will take

lllrsany = 11(C = A)2ul|2ary
for a constant C' > 0 sufficiently large. Note that

1(C = 8)ullrzan > C[lull 2 + [1(=2)2ul| 2(ary

so that this provides an equilvalent metric to the H*(M) norm defined through pseudo-

differential calculus. In fact, on R"

(1 — A)*2u = (D,)*u.
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2.5 Schrodinger Equation

Let M be a Riemannian manifold without boundary with metric g and Laplace-Beltrami

operator A,. The Schrodinger equation on M is

(Dt — Ag)u = O
U’t:o = Uog

where D; = %@.

The Schrodinger equation has the property that the H*(R™) norm is preserved. This
implies that if the initial condition uy € H*(R") for some s > 0, but uy ¢ H*+°(R") for
some small § > 0, then u(t,-) € H*(R") and u(t, ) ¢ H**°(R") for fixed ¢t. This implies u
does not become more well behaved globally in x over time. Additionally, it is possible for u
to concentrate locally in x at a single point in time. For example, an estimate of the form
||€imuo||2l10/c2 < C|Jugl[?, is not possible for all t > 0 if ug ¢ H'/?. Both of these issues are
why the best we can hope for is local smoothing averaged over time. We will end this section

by showing conservation of the H® norm for Schrodinger equation before we move onto local

smoothing results in the later sections.

Lemma 2.5.1. Let ug € H*(R™). Suppose wu is the solution to

(D — A)yu =0
U|i=0 = up.
Then
[lu(t, =)|as @ny = |luol | s )
for allt > 0.

Proof. We will prove this for uy € .%°. Since Schwartz functions are dense in H*, we get the

results for all functions uy € H*®. Additionally, if uy € .7, then 4, € .7.
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Suppose uy € .. If we take the Fourier transform in x of the Schrodinger Equation we

get

This has the solution @ = e~ #€I*t4,. Now, taking the inverse Fourier transform gives that
u(t, z) = e ug(x) = F M e 1Pty

is the solution to the Schrodinger equation. The operator e®® is called the Schrodinger
propagator.

Now recall that

ullzs = [[Au]| 2

where

Asu = Z7L(€)%0).

Using that u(t, z) = e*®uy(z) and that |e=™E’| = 1 gives

[l = [|A%€" S up | 2
1
(27)"

= Glle ol

= [[Auol| 2

’ ’<5>8€it|£‘2ﬁ0‘ ’LQ

= [[uol[ s

]

We will now consider the Schrodinger equation with a potential term V' (z) where V' €

C*(R"™) and V and all of its derivatives are bounded. The addition of the V' (z) term here
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does not allow us to use the same proof as in the case of R™ without a potential term. Let u

be a solution to

(Dy—A+V)u=0
(2.5.2)
u(0,z) = up(x)

and ug € L (R"). Let E(t) = ||u(t, ')||%Q(R”)' Then,

E'(t)

2Rei / (Dyu)udx

2Rez'/ (A — V)uudx

:2Rei/ (Au)ﬁdw—?Rei/ (—Vu)udx
= 2Rei/ (Au)udz, since —Vua is real

= —2Rez’/}R |Vul*dz

= 0, since |Vu|? is real.

Hence, E(t) = E(0) for all t.
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Let Eyi(t) = ||Vu(t, ')”3:2(11@”)' Then,

Ei(t) = 2Rei/ (D;Vu) - Vudz
= 2Rei/ V(A —=V)u) - Vudz
=2Rei | V(Au)-Vadr —2Rei | V(=Vu)-Vudx
Rn Rr

= 2Rei/ —|Aul|?’dr —2Rei [ V(-=Vu)- Vudz

Rn
= 2Re2'/ uV(=V) - Vudx — 2Rez’/ —VVu - Vudz
= 2Rei/ uV(=V) - Vudz
<C i [uV (=V)|* + |Vul*dx
<C [ |uf*dx+ |Vul*dz

Rn R

This implies that

Ei(t) — CEi(t) < Clluol|12
(Ex(t)e™")e < Clfuoll72
(Br()e™") < e™Cluollz-

T
B(T)e T~ By(0) < [ e Clulade
0

T
E\(T) < e“T (El(O) + C||ug) 22 / eCtdt>
0

Ei(T) < Cr(E1(0) + |uol|72). (2.5.3)
This implies that for all 7" > 0 there exists a constant Cr > 0 such that

u(t, )@y < Orlluollf gny.
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In this situation we see that the H! norm of u is bounded by the H' norm of g, but it is
not exactly conserved.
We will now consider the Schrodinger equation on a manifold M with metric g. Let u be

a solution to

(Dy —Ayu=0
(2.5.4)
u(0, ) = ug(x)

and ug € .7'(M). Note that (=D, — Ag)u = 0. Let E(t) = [[u(t,)||72(5;)- Then,

E'(t) = 2Re2'/ (Dyu)udM
M
— 9Rei / (Aw)adM
M
= -2 Rei/ (Vau) -V, ude
M
= —2Rei/ |V yul*dz
M

= 0, since |V, u|? is real.

Hence E(t) = E(0) for all ¢ > 0. Therefore, for all ¢ > 0, we have [[u(t, -)[|72(5s) = |0l 720 -
Let Ei(t) = ||V ul(t, -)H2LQ(M). We use V, to define E; because it commutes with A,

however E + FE; is an equivalent norm to

[t e any = 1L+ 02 + Do + o_)ull[L2ar).
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El(t) = / (V,00u) - VyadM + / (V,u) - V,dpadM
M M
M M

M M

1 M M

=0

Therefore £, (t) = E:1(0) for all £ > 0. Hence, for all ¢ > 0 we have |[u(t, )| |71 (as) < [[wol 71001
We see that on a manifold the L? and H' norms are conserved by using the properties of the

Laplacian. In order to use the properties of the Laplacian for the H® norm we will define the

norms in terms of powers of the Laplacian. In general, let ||u|| ;. = ||(C' — A,)*/?ul|12, where
(C — A,)*/? is defined by the functional calculus presented in Section 2.4 for 0 < s < 1. This
norm is equivalent to any norm defining Sobolev spaces through pseudo-differential calculus.

Note that

(C - Ag)s/z(Agu) = A, ((C - Ag)s/zu)'

Let F(t) = ||ul|%,. Then,

E(t) = /M ((C = A,)50u)(A,)sadM + /M ((C — Ag)iu)(A,)0udM
- /M ((C = A3 (Agw)(C — AiadM — [ ((C = Ag)3u)(C — Ag) (Agm)dM

= / A,((C = A)5u)(C = A5adM — | (€= A)ru(Ay(C = A,)ra)dM

- _/M(V9<C_Ag)gu)'(Vg(C_Ag>;mdM‘i‘/(vg(C_Ag);u)'(Vg(C_Ag)gmdM

M

=0.

Hence E(t) = E4(0) for all t.
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CHAPTER 3

HISTORY OF LOCAL SMOOTHING RESULTS

3.1 General Local Smoothing Estimates

As stated in the introduction, local smoothing estimates have been studied by many over

the years. The results by Doi [Doi96] and Craig-Kappeler-Strauss [CKS95] show that if a

manifold is asymptotically Euclidean we gain 1/2 derivatives locally in = averaged over time

if and only if there are no trapped geodesic. Results by Marzoula-Metcalfe-Tataru [MMTO8]

and Ralston-Tau [RT07] extended these results to global in time local smoothing estimates

on classes of asymptotically Euclidean manifolds. There have many been results to show how
different kinds of trapping on asymptotically Euclidean manifolds affect the local smoothing

estimates. In the following table we will summarize some of the results for local smoothing

for asymptotically Euclidean manifolds.

\ Trapping Type \ Smoothing Estimates \ References
None 1/2 gain [D0i96],[CKS95],[RT07],[MMTOS]
Non-degenerate unstable 1/2 — € gain [Dat09], [Bur04], [Chr08§]
Stable No Polynomial Gain [Ral71]
Infinite Degenerate Unstable | No Polynomial Gain [Chr18]
Finite Degenerate Unstable Polynomial Gain [CW13], [CM14], [CN22]

From this we see that there is a range of a gain of 1/2 derivative with no trapping to a

complete loss of polynomial gain in the degenerate unstable and stable cases. We will focus

on the case in R", which has no trapping, and the finite degenerate unstable cases where the

polynomial gain depends on the nature of the unstable trapping.
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3.2 Local Smoothing in R?

We have discussed how on R” the local smoothing estimate is a gain of 1/2 derivative.

We will prove this for R?. In the R? case,

Theorem 3.2.1. Suppose u solves

(Dt — ARZ)U =0

U|t:0 = Ug

where ug € HY?(R?). Then for every T > 0 there is a Cp > 0 such that
T
/0 1)~ Dau|[* + [1(y) " OyulPdt < CrJuol[31/2-

The important parts of the theorem is that the (z)~! and (y)~' terms localize in space
and that the results implies a gain of 1/2 derivative locally averaged over time. (The —1
power is not optimal. Our focus in this thesis is the gain in derivatives, not the optimal
localizing term.) We will go through the proof of the theorem because it illustrates one of the
common techniques, a positive commutator argument, used to help prove local smoothing

results in more complicated situations

Proof. Note that
[—A, 20, + y0,] = —2A.

We want to mimic this idea with a vector field B = a(x)0, + a(y)d,, so that a(z) ~ z near
0 and is bounded as |z| — oco. Let B = a(x)0, + a(y)d,, where a(z) = arctan(z). Note that

a'(z) is non-negative, a(z) and all derivatives of a(z) are bounded, a(z) ~ z near 0, and

Remark 3.2.2. We could choose a(z) = z(z)~! or any function such that a’(z) is non-

negative, a(z) and all derivatives of a(z) are bounded, a(z) ~ z near z = 0. We chose
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arctan(z) here because it provides a better localizing term than z(z)™' and is already defined.
In the proof of the main theorem we will define a function so that a(z) = z near z = 0 to

make the calculations simpler.

Now,

[B, —A] =[a(2)0, + a(y)d,, =03 — I7]
- [a(x)a:u _83] + [a(y>ay7 _85] + [a(x)aw _85] + [a(y)ayv _ai]

= (a"(2)0, + 2a/ (x)02) + (a"(y)0, + 2d' (y)O}). (3.2.3)
Since u solves the Schrédinger equation,

_ /T(B(Dt ~ A)u, u)dt

T

(B(Dyu),u) + (B(—Au),u)dt

S

(Bu, Dyu) + (B(—Au), u)dt — i(Bu,u)|d

(Bu, Au) + (B(—=Au), u)dt — i(Bu, u)|}

S

(A(Bu),u) + (B(—Au), u)dt — i{Bu, u)|}

([B, —Alu, u)dt — i(Bu, u)|,

0-

Il
Nhﬁ%h

Hence,

/0 ([B, —Alu,u)dt = i(Bu, u>|0T

Using (3.2.3) gives

— /0 ((a"(2)0y + 2’ ()02 )u + (a" (y)Oy + 24 ()2 )u, uydt = i{Bu,u) ‘T

0"
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Moving the terms with single derivatives to one side gives

—/0 (2a' (2)02u, u)+(2d’ (y) 0w, u)dt = i(Bu,u>}§+/0 (a"(x)@xu,wdt—l—/o (a" (y)0yu, u)dt.

Integrating by parts in z and y and moving the terms where 0,,0, hit '(z) and d'(y)

respectively to the right hand side gives,

T
/ (2d(2)0pu, Opu) + (2d'(y)Oyu, Dyu)dt
0

:i<Bu,u>’0T—/O (a"(m)@xu,u)dt—/o (a" (y)Oyu, u)dt.

Substituting in for a/(z) and o'(y) gives

T
2 / () Byl 2 + (1) Byl [Zadlt

_i<Bu,u>’0T—/O (a”(m)@xu,u)dt—/o (a" (y)Oyu, u)dt.

Taking the absolute value of both sides gives,

(a(x)0pu, u) |T (a(y)Oyu,u) |(:)F

ol T

T
2/0 1)~ Oul |72 + [[(y) ™0y [72dt <

+/0 |<a”(x)(?xu,u)|dt—l—/0 [{a" (y)Oyu, u)|dt. (3.2.4)

If we can show that the right hand side is bounded above by Cr||ug||3,,,» for some constant Cr,

then we have the desired bounded. This holds if

(£(2)0,u)| < Clluol 22 for £(2) € S°.

H1l/2
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The four inner products satisfy this for f(z) = a(z) or f(2) =d"(2) and z =z or z = y.

(F)0u,0)| = | @0, f(2)u)

= (D)D) 200, ()|

— |((D,)"20,u, (D)V/? f(z)u)’, by Lemma 2.3.10

< (D) Y20,ul|2|[(D:)Y? f(2)u| 12, by Cauchy-Schwarz.

Note that (D.)~'/20, = Op'((&)""*)Op!(3&.). Since (&)7"2 € 572 and i¢, € 57,
Theorem 2.3.5 says (D) /20, = Op (a;) for some a; € S/2. Hence by Corollary 2.3.9 there

is a constant C] such that
(D) "Y20,ul|2 < Cyl|ul| g/ (3.2.5)

Note that f(z) € S°, so (D.)"/2f(z) = Op*(asy) for some ay € S¥2. Hence by Corollary 2.3.9

there is a constant Cy such that
(D)2 (f(2)a)]z2 < Collul e (3.2.6)
Combining (3.2.5) and (3.2.6) gives
[(F(2)0.0, )| < CullulliaCollulli < Clful e (3:2.7)

since u solves the Schrodinger equation. Using (3.2.7) for all four inner products on the right

hand side of (3.2.4) gives
T
/ 1)~ OwullZ> + ()~ Oyul |2 < CrlluollFe
0

for some constant C'r.
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This proof illustrates two of the important ideas throughout. The first is taking a vector
field B and commutating with A so that the terms we want to estimate are the same sign.
We will use this technique to get the desired estimates away from trapped geodesics. Secondly,
it illustrates that in Euclidean space we get a gain of 1/2 derivatives. This is the best local

smoothing effect possible. On manifolds with trapping we get a worse smoothing effect.

3.3 Local Smoothing on a Surface of Revolution with Degenerate Trapping

In this section we are going to consider a surface of revolution with degenerate trapping.
From the previous section we saw that we could use a positive commutator argument to get
a local smoothing estimate for the Schrédinger equation on R?. This same idea will be used
to get a local smoothing estimate away from the trapped geodesic, allowing us to localize
near the trapped geodesic. Since the manifold is a surface of revolution, we can separate
variables to reduce a 2-dimensional problem down to 1 dimension. From there we will use
a T'T™ argument to show that a microlocal bound on a resolvent estimate gives the desired
result. Finally, we will use a scaling argument and another positive commutator argument to

prove the resolvent estimate.

3.3.1 Setup

We are going to consider the Schrodinger equation on a surface of revolution. Let M be
the manifold R, x S with the metric da? + A2(x)d6? where A(z) = (1 + 22™)za and m is an
integer greater than or equal to 2. This surface of revolution will look similar to Figure 3.3.1.

Notice that there is only a trapped geodesic at x = 0, which circles the surface of revolution
and that the metric is asymptotically Euclidean. We say this is a degenerate trapped geodesic
of order 2m since (A2)*) = 0 for all positive integers k < 2m. Recall that A’ determines how
the = value of a geodesic curve changes and A”/A determines the curvature for surfaces of

revolution. If more derivatives of A% are 0 at the critical point, then we should expect the
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Figure 3.1: Surface of Revolution with Degenerate Trapping

surface to look more cylindrical near the critical point. This leads us to believe that the
degeneracy of the trapping will affect the local smoothing estimates and that the order is
important.

The local smoothing result proven in [CW13] is the following,

Theorem 3.3.1 (Christianson-Wunsch (’13)). Suppose M is the manifold R, x Ry /277
with the metric dz? + A%(2)d0* where A(z) = (1 + 2>™)Y2™ with m € Z and m > 2.
Suppose u(t,z,0) is a solution to the Schrdodinger equation on M with initial condition
u(0,z,0) = ug(z,0) where ug € H* for s > 75 Then for all T > 0 there is a Cr > 0 such

that
T
/ ()~ ul[fndt < Cr([[{(De)™ ™ Dug|[72 + |[(De)uol[72).
0

The paper by Christianson and Wunsch also shows that the best possible result is a
gain of 1/(m + 1) derivatives locally averaged over time in the #-direction and a gain in 1/2

derivatives locally averaged over time in the x-direction.

Remark 3.3.2. In the m =1 case in the formula we would get a 1/2 gain, however there is

only a 1/2 — € gain in derivatives instead of 1/2, since this is the non-degenerate unstable

42



trapping case. The same proof will work to get a log squared loss if we adjust the commutant
a in (3.3.14). As m — oo, the degenerate trapping should become worse, which we see that
it approaches no polynomial gain in derivatives. This situation as m — 0o is similar to the

degenerate unstable trapping case studied in [Chrl8].

3.3.2 Proof Overview

We will follow the proof directly from [CW13] to go over the strategies used. To start

recall that,

Af =(02+A20; + A1A'9,)f.

After a conjugation argument to get rid of the first order derivatives terms we can instead
study the operator,
Af =07+ A0 —Vi(a)f

where

1 1
‘/1(1') = 514”14_1 — Z(A/)QA_Q.

Initially we use a positive commutator argument. This technique is similar to the proof of

local smoothing in the Euclidean case. This positive commutator argument will give
T
/ (1) Opul[F2 + | 2™ ()™ Ogul[Z2)dt < Clluo[771/2-
0

Note that this results shows that there is perfect local smoothing in the x-direction and that
away from x = 0 there is perfect local smoothing in the §-direction. Now, we need to show
what happens near z = 0.

We can now separate variables to get that

u(t,x,0) = Z e*0u(t, x)

k
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with initial condition

ugp(x,0) = Z g ().
k

After separation of variables and local smoothing away from the trapping we get the desired

theorem if we can show, for |k| > 1,

T
/ [Ix(@)kugl[72dt < CUIR™ ™ Do k|22 + [luoellF/2)
0

for some y € C°(R) with x(x) = 1 near x = 0. This comes from the fact that dyu(t, z,0) =
S ke (¢, z), so a derivatives in 6 correspond with multiplying by k. Since we have perfect
local smoothing in the z-direction we only need to show upper bounds on the #-direction
near x = 0.

The next technique we will use is to break up u into parts where the angular frequency is
high compared to the radial frequency and where the angular frequency is low compared to
the radial frequency. We will call these the high and low frequency parts respectively.

Let ¢ € C°(R) be an even function with ¢(r) =1 for |r| < 1 and ¢(r) = 0 for |r| > 2.
Let

U = Upj + Uo

where

Uhi = ¢(Dx/k)ua U = (1 - w(Dx/k))u

Intuitively, the obstruction to a locally smoothing estimate is the trapped geodesic which
goes around the surface. If the radial frequency is high, then the waves will spread out quicker.
The issue is when the angular frequency is high and the waves stay circling near the trapped
geodesic at z = 0 for a long time. Specifically, on supp (1 — ), we get |k| < (D), so we
can control u;,, by the radial derivative where we have local smoothing estimates up to a

compactly supported region similar to . Taking gZ to have the same properties as ¢ but is 1
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on supp (¢), this breakdown allows us to get the desired result if we can show
T ~
| Ik D2yt < €I Vg (333)
0

To handle the high frequency argument we will do a TT™* argument. Although in our case

it will be F'F*, since we used T already. Let
P, = D>+ A% (2)k* + Vi ().
and let F'(t) be defined by
F(t)g = X(@)p(D,/k)kmre g

where e~ is the Schrédinger propagator. If we can show F is a bounded mapping

F: L2 — L¥[0,T])L2, then
"sz;(Dz/k)M|Lf([0,T});L§ = Hk#“F(t)UOHLg([o,T]);Lg < CHkmL““OHLi

holds for some constant C' and gives the desired estimate in (3.3.3). There is a bounded map-

ping F : L2 — L([0,T])L2 if and only if there is a bounded mapping F'F* : L([0,T])L2 —
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L2([0,T])L? where F* is the adjoint of F.

(F(t)g(x),q(t, o)) 20,722 = / / q(s, z)dxds (3.3.4)
/ / (D, /k) fmsTe™ P g(2)q(s, v)dxds (3.3.5)
/ R¢ (D, /k) km+le 5Py (2)g(x)q(s, z)drds (3.3.6)

/O/kaﬂe “Pep (D, /k)x(2)g(x)a(s, x)dxds  (3.3.7)

/0 /R km+1 esPep (D, /k)x(x)q(s, z)dxds (3.3.8)

/ / foe1 esPeip (D, /k)x(x)q(s, z)dsdz (3.3.9)

= (9(x), (F*q)(2))r2 (3.3.10)

where

(F*q)() :/0 ket P (D, /) x(2)q(s, x)ds.

Line (3.3.6) follows since we are just mulplying by x(z). Line (3.3.7) follows from ¢ (D, /k)
being self-adjoint. Line (3.3.8) comes from e*** being unitary.

Applying F'F* to a function f gives

FF*f(t,2) = x(x)¢(D, /k)k7 /O P (D, [R)x () f (s, )ds.

We want to break FF*f(t,z) up into two pieces FF*f(t,z) = x¢(v1 + v2) so that v; solve
a differential equation. Then we can apply a resolvent estimate to show FF* is a bounded

operator. If we let

w= ks [ (D, (@) s, )
0

and

w= kst [ R, (@) 5, s,
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then v; solves the equation

(D, + Pp)v; = Likmitoy f.

Now we take the Fourier transform with respect to t to get
(7 + Po)v; = tikmy f.
The idea is if a resolvent exists, then we have
XWt; = Eikm (7 00 + Pp) by f. (3.3.11)

and

|IxVill 2o ez < ClfIlezo,myy22 (3.3.12)

for some constant C'. Since the Fourier transform is unitary, given (3.3.12) we get
EF* fll 2oz < lIxvvillezqomez + lIxvvallzqome < 201 fllLzo,mLz-
Take —z = 7k~2 and h = k1, then showing (3.3.11) and (3.3.12) is given by proving
Ixt(—2h ™2 £i0 + D2 + A2 (2)h ™% + Vi(2)) x| 122 < Chinet,
After factoring out h? on the left hand side we get the necessary estimate to show will be
X (2)Y(hD,)(—2 £40 + (hD,)? + V) " p(hD,)x(2)||p2 2 < Ch™ i) (3.3.13)

where V = A7%(z) + h*Vi ().
This allows us to reduce the local smoothing estimate to proving this microlocal resolvent
estimate. This low and high frequency decomposition and F'F* argument will also be used

when we get to the multi-warped case. However, we will have two parameters p, n instead of
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just k. This means we will have to be more careful with what we mean by the low and high
frequency parts. We will also need to isolate at a critical point that is moving depending on
p,n. However, the ideas used in the degenerate surface of revolution case remain the same.

Now, showing this resolvent estimate is equivalent to
CIQ1 = 2)vll 2wy = PP [0]| 2

for Q1 = (hD,)?> +V — h*V; and v = p“u with ¢ € S%(R) with compact support in

{I(z,6)] < €}

To do this we notice that

Cll(Qr — 2)vl[ 2@y ||| 222y > K[Q1 — 2, a"]v,v)| (3.3.14)

when a" is a bounded operator and () is essentially self-adjoint.

We will go over the intuition behind the choice of commutant a, review why we need to
use a two parameter calculus in this proof and where we derive the powers of A that we use to
scale x and . We introduce the commutator in (3.3.14) so that due to the Weyl quantization
the first term is given by h(Op}'(Hy, (a))v, v) where ¢; is the symbol of ()1 and we only have
odd order terms. The main idea is that q; ~ &2 — 2?™, which has a negative term, however

we can get rid of the negative term using the correct commutant. If @ = h='z&, then
h{q,a} = {€* — 2°™ &} = 2% + 2ma®™.

However, the issue is that a is unbounded, but we need a ~ h™'z¢ near 0. In [CW13] the
authors define a function A so that A(s) ~ s near s = 0 and bounded. Then, a ~ h™*A(z)A(€)
will almost give the proper a, however this is still unbounded in terms of A. To solve this
we will take a ~ A(h=?x)A(h=P¢) with o + 8 = 1, however hH,, (a) ~ (£ + 2*™) will only

be true on a h dependent region. To solve this we will rescale x = h®X and & = hP=.
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Then, hH, (a) ~ h(EZh™® + 2?™"1Xh=F) = h(Z2h=o+F 4 X2mp=A+Em-Da)  We want
hotf = p=B+@m=1a and B+ o = 1 to get the lowest power of h. Solving the two equations

gives « = 1/(m + 1) and f = m/(m + 1). Hence,

thl ((l) ~ h?m/(m+1)(X2m + 52)

for X, = < C for some constant independent of h.

Remark 3.3.15. The case where x = h®X and & = hPZ for a, 8 = 1/2 is considered the

standard rescaling. However, since o+ =1 we will still have

(hOp ! (Hyy (@)yu, u) & h*™ 0D (Op (X" + E2)u, w).

The last issue is that we will have higher order terms. Specifically looking at the third
order term we will get a term similar to h3h—3Fp(Em=3)a x2m=2 — p2m/(m+1) x2m=2  There is
no gain in powers of h to absorb the higher order terms which is an issue since X?™~2 > X?m
for X < 1. This is why we need to introduce a second parameter k. In [CW13], they use the
scaling © = (h/h)*X and & = (h/h)PZ. With this scaling the third order and higher terms
will now have the same powers of h, but gain powers of h. By taking h sufficiently small we

can absorb the higher order terms.

Remark 3.3.16. We have glanced over the details here to explain the intuition for the
argument and the need for the two parameter calculus. Calculating [Q1 — z, a*] will be the
major issue for proving the local smoothing estimate for the multi-warped product with two

infinite ends case and will be covered in full detail in Chapter 4.

3.3.3 Conclusion

The main techniques we will use in the multi-warped product case are those used in

[CW13]. The difference is that we will have a range of trapping rather than a single point. We
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will then separate variables to reduce it to a 1-dimensional problem. This is the advantage to
studying a multi-warped product. We will first prove local smoothing away from the trapping.
We will then break down into the high and low angular frequency parts. The difference in
the multi-warped product case is that we will have two angular frequencies. Then, we will do
a T'T™ argument to reduce the local smoothing estimate to a microlocal resolvent estimate.
Finally, we will do a similar commutator and two parameter scaling argument. The main
difference here is that h will be dependent on both angular frequencies and estimating the

terms of commutator is more complicated.

3.4 Other Related Results

Next we will cover two other related results to the paper [CW13]. These proofs will follow

a similar process, however there will be changes that are necessary.

3.4.1 Inflection Trapping

In the paper [CM14] by Christianson and Metcalfe, they extend the degenerate trapping
on a surface of revolution to inflection-transmission trapping. In this case we will have the

following result,

Theorem 3.4.1 (Christianson-Metcalfe ('14)). Suppose M is the manifold R, x S' with the

metric dz? + A*(x)d6* where

A(z) =1+ / gy = D)Ly dy
0
for positive integers my and mo. Suppose u solves

(Dy — App)u(t,z) =0

U|t:0 =uy € H?
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for some s > 0 sufficiently large. Then, for all oo > T > 0 there is a Cr > 0 such that

T
/0 1)~ Ol 72 + [[{w) =2 Opul |7t

< Cr(|[(Dg) ™ ™| |72 + [[{Da) ?uo[72)

where

2 1
B(ml,mZ):maX< o M ¥ )

m1+1’2m2+3

Figure 3.2 from [CM14] shows roughly what the manifold M looks like.

Figure 3.2: Surface of revolution with inflection point trapping from [CM14]

There is degenerate trapping of order 2m; at = 0 as in [CW13] and inflection-transmission
trapping at x = 1 of order 2my + 1. This proof follows the same strategy as [CW13]. The
main difference is that we have two points of trapping to deal with. This requires a positive
commutator argument to get local smoothing away from x = 0 and x = 1. Then, we do the
same separation of variables, high and low frequency decomposition and T7T™ argument. The
difference is that we then have to isolate around the two critical points instead of one. The
estimate around x = 0 follows from [CW13], while the estimate around x = 1 is proved using
a scaling argument and two-parameter calculus again. This estimate is different because

A’ does not change sign at x = 1. The main change in this paper is showing that we
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can isolate around each trapped geodesic and then showing the necessary estimates in the

inflection-transmission trapping case.

3.4.2  Multi-Warped Inflection Trapping

In [CN22], Christianson and the author extend the inflection point trapping estimate to

multi-warped products. In this case we consider the functions A? and A3 in Figure 3.3.

N

Figure 3.3: The functions A7 and A2

Then, we defined the multi-warped product X = R, x S' x S! with the metric

g = da® + A%(x)d0* + A3(z)dw?.

Notice that there is inflection-transmission trapping at x = 1 of order 2m; + 1 and x = 2 of
order 2ms + 1, but the trapping at £ = 1 is only in the -direction and at x = 2 the trapping
is only in the w-direction.

The result we get is,
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Theorem 3.4.2. Let (M, g) be the multi-warped product constructed above. Suppose u solves
the Schradinger equation on M with initial condition ug € #(M). Let m = max(m, ms).

Then for each T > 0 there exists a constant C' such that

T
L™ e < Cluol? gy 343

0 H2m+3 (M)

This proof follows the same strategy as [CW13]. The main difference is that we have
two angular directions, however the trapping is only in one direction at each point. This
allows us to separate variables in only one direction to get the estimates at x = 1 and x = 2
separately. Once we separate variables, we have a function with two parameters rather than
one parameter like in [CW13] and [CM14]. We solve this issue by showing that the extra
dimension does not harm the local smoothing estimate, because we have local smoothing in
the extra direction near x = 1. After making sure this is the case and working through the

low frequency estimates this case reduces to the result proven in [CM14].

Remark 3.4.4. The result proven in this paper will follow a similar process to [CW13],
[CM14], and [CN22]. One main difference is that we have trapping that when projected to the x-
direction after separating variables forms a countable dense subset of an interval. Additionally,
this trapping is dependent on both angular frequencies. This prevents a straightforward positive
commutator argument. The other main difference is that we will actually separate variables

in both angular directions, since the trapping is not isolated in a single direction.

93



CHAPTER 4
MULTI-WARPED PRODUCTS WITH TWO INFINITE ENDS

4.1 Introduction

In this chapter we will use the proof methods used in [CW13], [CM14], and [CN22] to
show a local smoothing result of the Schrodinger equation on a multi-warped product where
the projection of the trapped trajectories onto the z-coordinate after separating variables is a
countable dense subset of the interval [—¢,¢]. We will start by considering the multi-warped

manifold M = R x S! x S! where the metric is given by

9(z,0,w) = da* + U_(x)?d0> + U, (x)*do7.

The U? and U? will look roughly like the following functions in Figure 4.1 near 0.

U?(x) U2 (x)

Figure 4.1: Warping Functions

Note that the Laplacian will be determined by U;', so that there is finite degenerate
unstable trapping in the _ direction at —¢ and there is finite degenerate unstable trapping

in the 0, direction at e. We will want g to be Euclidean outside of a compact set.
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The important fact to notice from this setup compared to the setup in [CN22] is that
for z € (—¢,¢), U2(z) is increasing while U3 () is decreasing. This causes trapping on this
region rather than being isolated at two points in the radial direction like in [CN22]. As a
result, we will get perfect local smoothing only outside of [—¢, ¢] and will gain less than 1/2

derivatives on the region depending on the point = € [—¢, ¢] and the nature of the trapping.

4.2 Set-up

The picture given in Figure 4.1 will guide the setup of the problem. We will make slight
changes to help with calculations.
To start we will define the following functions to construct the metric. Fix 1 > ¢ > 0

First, let K € C°(R) be a cutoff function so that

1 —2e<2<2¢
K(x) =

0 4e < ||

K(z) >0, K'(z) > 0 on [—4e, —2¢| and K'(z) < 0 on [2¢, 4¢], K(x) is even and has a smooth

square root K'/2(z). Let my, my > 2 be a positive integer. Define the function

and

V_(z) = K(2)(M = (z+2)"™) + (1 — K(z))z~*

where ¢ > 0 and M > (5¢)>™ and M > (5¢)?"2. The choice of sign is so that Vy has a
critical point at « = ¢ and V_ has a critical point at 2 = —e. The choice of M is so that
K(z)(M — (x —€)?*™) > 0 and K (x)(M — (z + £)?"2) > 0. The nature of V. is such that it
has a single degenerate critical point of order 2m; at x = ¢ and is equal to =2 outside of a

compact set. The nature of V_ is such that it has a single degenerate critical point of order
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2my at x = —e and is equal to 72 outside of a compact set.
Let Uy =V, Y2 for convenience. With these definitions we consider a manifold M =

R x S x S! with coordinates (z,6,,0_) and the metric
g=da® + V7 (2)d6* + V (2)d0: = da® 4+ U? (x)d6? + U2 (x)db>.

Then,
Ulu_+U.U.

Oy
U, U_

Ay =&+ V(2)0F +Vi(2)95, +
We will prove the following theorem,

Theorem 4.2.1 (Main Result). Let M be the multi-warped product with Ay constructed
above with the case m; = mqy = 2. Let u be a solution to the Schridinger equation on M with

initial condition uy € S (M). For each T > 0 there exists a constant C' such that

T
Ml it < Clltl By
Additionally, as a result of the proof of this theorem we have the following resolvent
estimate,
Theorem 4.2.2. Let R(\) = (—Ap—M\?)~! denote the resolvent on M. For any x € C°(M),
there exists a constant C' > 0 such that for A € R and A > 0,

[[XR\ —i0)x|| 122 < OA72/3,

Remark 4.2.3. The local smoothing away from the trapping in Proposition 4.3.42 holds for
all integer my, mg > 2. The estimate in (4.4.13) to prove local smoothing near the trapping is

where we need to reduce to the case m; = mqy = 2.

Before we begin, we want to do a conjugation argument to reduce the Laplacian and
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volume form U,U_. Let T = (U,;U_)"/2. Then,
A=TAT ' =0>+V_ (2)0} + V+(ZL‘)892+ + Vi(x)

for

L UZ(UL)? + (UL)PU2 = 2U20"U- — 2U0 UL U2 — 2U,U_ULU".

Vi) - AU2?

Let & = Tw and @y = Tug. As explained in Section A.3, if @ solves

(D — A)u(t, z) = (4.2.4)

(0, x) = tg(x),

then w is a solution to

(Dy — A)u(t,z) =0
(4.2.5)

u(0,z) = up(x).

Additionally, if

T
/0 ‘|<x>73/2a’|§{1(X,dzd6,d9+)dt < C’WOH?ﬂ/B(X,dxde,dm)

for some constant C' > 0 holds, then

T
/0 162) 20l By vy < C' Mt B v

holds as well for some constant C’ > 0.
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4.3 Local smoothing away from trapping

4.3.1 Separation of variables

In [CN22], we would now do a positive commutator to get local smoothing away from the
trapping. The idea is that we need to use a function f(x) such that —f(z)V’(x) > 0 and
—f(z)V{(xz) > 0 for all z. However, this argument would only work outside of the region
[—¢,¢], since V| and V' have different signs on this range. To handle this interval we will
separate variables first. Due to the manifold being a multi-warped product, we can write a

solution u to (D; — Ay)u = 0 with u(0,z) = ue(z) € .7 as

u(t,z,0,,0_ Zupn (t, x)e'Po+einf-
and
ZL‘ 0+7 Z Usp ., 0 1p0+ einG,
where
(Dy = Apn)upn(t, r) = (Dy + D + p*Vi(2) + 0V_(2) + V(@) Jupn(t, z) = 0
and

Upn(0,2) = Uppo(T).

We can see that u,,, is the solution to a 1-dimensional Schrédinger equation. Let

Vo = p*Vi(z) +n°V_(z). (4.3.1)
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4.3.2 Norm conservation

Before we compute the positive commutator argument we will show that the H® norm is

conserved for each wu,,. For each u,,(t,z) we define

ba(@.8) = (€ + (C+PVilw) +n°V-(2) + Vi(2)))

where C' > 0 is chosen so that (C + p?V,(z) + n?V_(z) 4+ Vi(2)) > 0. This guarantees that
I3, is real. Let by, (z,8) = & + p*Vi(z) + n*V_(z) + Vi(z) so that Apn = by

B > (i 2k+1
0p* (15, By) = 2 (Z O, by

) (4.3.2)
r=y,§=n

where the right hand side of (4.3.2) is a formal asymptotic expansion. First note that

AD)(Ip (2, )by (y, m) = s(Vy (@) + Vi (@))15,1(26) — (25€L5,) (Vo (@) + Vi (2)) = 0.

This implies that

i o0 2k+1 v
[Op“ (15,0 = (; 2k+1 (@5 €)bpn (9, 1)) W’M) :

Note that 9,0:b = 0 and 9b = 0. Hence,

S 1 S
A (2, )bpn (Y1) ey = gmrgr D (@ ) D (bpaly, m)

z=y,§=n

Now,

D2, 0 (y,m)| < Crlpn (4.3.3)

for some constant Cj dependent on k. Additionally

g 2k+1
|D§k“lf,7n(x,£)| < Crslpm . (4.3.4)
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This is due to fact that we lose one power of ¢ with each derivative and

€1 < (€ +C+ P Vila) +0?Vo(w) + Vifa) V2.

Combining the estimates in (4.3.3) and (4.3.4) gives

2k+1 41

]A(D)Wzs (2, by Doy n| < Coslin

Since the expansion begins with k£ = 1, we have
00 (5,), Apalu]| | < CullOp (15,12 )ull < €] 0D (15 ull 2

Let E5.(t) = [510p*“( (13/2)ty | 2dac. Then,

d
Bl = / (0D 0521 Buty)Op " (12 )z + [ (0D (152)0,,) 0 1300ty

/Op ls/2 pnup,n)Op ZS/2 )ty ndx /Op l‘(”/2 JupnOp® (l;{f)(ﬁpmﬂp,n)dx
=2Ret [ (Op (15 Byt ) O 131ty
R
=2 Rei/[Opw(l;{,f),ﬁpm]up,nOp (l8/2)upnd:1:
R

<10p " (@312): Apalitpnl| 2| OP " () ttpn] .

<C.E; .
Following the calculations done in (2.5.3), we get
E;,n(t) < Ct,SEIS),n(O)

for a constant C} s dependent on s and t. Note that ||Op®(l, 12 '2Vu|| is equivalent to the H*

norm, o ||tupn||lms < Cps||tpnol|ms for all ¢ > 0.
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4.3.3 Positive commutator argument

We will now do a positive commutator argument at this point. For notational purposes
we will drop the w,, notation and just use u. Let B = f(z,p,n)0, where f is a function

dependent on x, p,n. Then,

[Apn, Bl = 2f' ()02 + ["(x)0, + p° f(2)V{(x) + n* f(2)V (2) + f(2)V] (). (4.3.5)
Note that D; commutes with B and (D; — Apvn)u =0, so
[=A,, Blu=[D; — A, Blu= (D, — A, ,))Bu— B(D, — A, ,,)u = (D, — A,,)) Bu. (4.3.6)

Additionally,

T
/ /(Dt — A, ) Buadzdt
o Jr
1

/ / ApnBuud:L'dt—i— [/Buud:c] / /Bthud:cdt

Buudm / /Bu u)d$dt+/ /BuD_tudxdt
o Jr

Buﬂdm / /Bu pn)udrdt

B uﬂdm

EN R
T 1

%\%\%\

SN N
1

Using (4.3.6) gives
T

g X 1
/ /[—APW,B]uadxdt == [/ Buﬁdm] .
o Jr tLJR 0

From (4.3.5)

/OT /R _ ((2f’(:c)6§ + ()0, + P2 f(2)VL(2) + an(:p)V_'(q;))u> cdedt
- 1[/31““135] / /f Wi (x)uadzdt.
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Integrating by parts and moving over the term with f”(x) gives

/0 /RQf'(a:)(ﬁxu)ﬁmu — p* @)V (z)ut — n® f(x)V' (z)uadzdt

:%{/Buudx} //f )V (x uudxdt—/ /f” )O utdzdt.

We want to estimate the absolute value of the right hand side where f(z) € C* such

that f and all of its derivatives are bounded. Recall from the proof of local smoothing in R?

(f(2)0:u,u)

bounded. This immediately gives that

1 T
—[/Buudw}
2 R 0

and (3.2.7) that

< Cllugl[3,:)» for f(z) € C> where f and its derivatives are

S CTHUOH%(UQ (437)

and

T
‘ / / f”(fv)&cuudmdt‘ < Crlluol s (438)
0 R

for some constant Cr. To handle the last term recall that

U2(U")* 4+ (U,)*U% = 2020"U_ — 20U UL U2 — 2U,U_U,U"
Viz) = AU 12 '
+ —

Note that U, U_ > Uy, U_ € C*. Additionally UL (x) = |z| outside of a compact set so

\/_
that Vi(z) — 0 as © — f+oo0. Hence, V/(x) € C*> and V/(z) and its derivatives are bounded.
We get

T
/f(x)Vl’(x)uud:Edt < O |uo||?1)2 (4.3.9)
R

for some constant C%.. Combining the estimates in (4.3.7), (4.3.8), and (4.3.9) gives

/0 (f'(@)00u, Ogu) + (—(p* f(2) V] (z) + n* f(@)V (2))u, u)dt < (2C7 + CF)l[uo] 7172,

—(P*f(z,p,n)V](x) + n*f(z,p,n)V (z)) > 0 and f'(z,p,n) > 0. To figure out the right
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function f(x,p,n) we have to understand the critical points for the potential V, ,(z) =
p?V, (x) + n?V_(z). We will first show that the only critical point is in the interval [—¢, £].
We have

V] =K'(@)(M — (z—&)*™) —2my(z —e)*™ 'K(z) — K'(2)27% + (1 — K(x))(—227%)
and
V! = K'(2)(M — (x4 £)*™) — 2my(z + €)™ 'K (2) — K'(z)x7 2 4+ (1 — K(x))(—227%).
If |z| < 2¢, we have K'(z) = 0 and (1 — K(z)) = 0. Hence,
Vi ==2my(x —e)*™ "V = —2my(x +¢)*™ .
If e < x <2¢, then

Vi(x) <O.

If —2¢ <z < ¢, then

Vi(x) > 0.

If |z| > 4e, we have K'(z) = 0 and K(x) = 0. Hence,

Vi=-217" (4.3.10)

If —4e < & < —2¢, then K’'(x) > 0. So, K'(z)(M — (z —&)*™) > 0 and K'(x)(M —
(z 4 €)*™2) > 0, since M was chosen so that (M — (z —£)*™) > 0 and (M — (z +£)*™) >
0 on supp (K). Additionally, (—2m;(z — &)*™ 1)K (x) > 0,(—2ma(z + &)*™2 " HK(x) >
0,K'(z)(x™2) > 0 and (1 — K(x))(—2273) > 0. Furthermore, we must have (—2m;(z —

e)?™ YK (z) > 0 or (1 — K(z))(—227%) > 0 and (—2ma(z + €)*™ ) K(z) > 0 or (1 —
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K(z))(—2z73) > 0 on this range. Hence,

Vi>C (4.3.11)

for some constant C' > 0.

If 4 > x > 2¢, then K'(z) < 0. So, K'(z)(M—(z—¢)?*™) < 0 and K'(z)(M —(z+¢)*™2) <
0, since M was chosen so that (M — (z —)*™) > 0 and (M — (z 4 £)*"2) > 0 on supp (K).
Additionally, (—2m(z £+ &)** H)K(z) < 0,K'(z)(z™?) < 0 and (1 — K(x))(—2273) < 0.
Furthermore, we must have (—2m;(z —¢)*™ ) K(x) < 0 or (1 — K(x))(—2273) < 0 and

(—2ma(z +e)?™ ) K(x) <0or (1 — K(x))(—2272) < 0 on this range. Hence,

Vi< —C (4.3.12)

for some constant C' > 0.

Combining the estimates above for when z > ¢ or z < —¢ gives that V| (z) and V' (z)
have the same sign for x ¢ [—¢, €| and that V'(x) # 0. Since on [—¢,¢] V! <0 for each p and
n, there is only a single critical, which will be denoted ., for V, ,,(z) = p*V,(z) + n*V_(z)
and z,, € [—¢,¢].

Next, define

for

1, |z| < 3¢
Cy/|z|® |z| > 4e

such that that Y (z) is smooth and even. This implies that a(x) = x when |z| < 3¢, |a(x)|

is bounded, and « is an odd function. This tells us that by taking f(z,p,n) = a(x — x,,),
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—(P*f(x)V](z) +n*f(x)V (x)) > 0 for all z. Hence,
T
| I @buallt + (G @)V ) @)V (o)) )t < Coluol s (4313
0
Next, we want to get a lower bound on
T
/0 (—(P*f(2)VL(z) + n’ f(x)V(2))u, u)dt.

Using the estimates (4.3.10), (4.3.11) and (4.3.12) on V| we have,

/0 — (PP f(2)V](2) + n* f(2)V (x))u, u)dt

T T
> / / (p* + n?)|z| 3 |u|?dzdt + C, / / (p* + n?)|u|*dzdt
0 R\ [—4e,4¢] 0 [—4e,—2¢]|U[2¢,4€]

T
+ / / —(p*f(2)V(x) + n® f(2)V (2))|u|*dzdt (4.3.14)
0 J[-2¢,2]
for some constants C',Cy > 0 and independent of n and p. We will estimate
T
| [ i@V @V @) s
0 J[-26,2¢]

in the following section.

4.3.4 FEstimates on the Potentials

The goal of this section is to prove a lower bound estimate of —(p? f (z) V] (z)+n?f(z)V'(z)).

Proposition 4.3.15. Let P(x) = p*(xz—¢)*™ +n?(x+¢)?™ for positive integers p,n, my, ms.

Let xq be the critical point of P(z). Then,
P/(2)(@ = 26) 2 Copmma [(1P(@ — )™ + n2(z — 7)™ + min{p?, n*}(z — 20)’]

for a constant C. ,, m, > 0 dependent on e, my, and mq, but independent of p,n.
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With Proposition 4.3.15 we have that

T
[, Vi) st eV )l
E,Ts
> / / Compms [(P2(& — 20)2™ + n2(z — 0)2™ + min{p?, n?}(z — 20)?] |uldadt,
0 J[—2¢.2¢]
(4.3.16)
since —(p? f(x)V] () + n?f(z)V'(z)) = P'(x)(z — x) when |z| < 2e.

Remark 4.3.17. This estimate tells us that if p > n or n > p, then our estimate is similar
to the x*™ case or x*™2 case in [CW13] respectively. When p ~ n, the estimate is similar to

the x* case in [Chr08].
We will prove Proposition 4.3.15 by using Lemmas 4.3.18 and 4.3.19.

Lemma 4.3.18. Let P(z) = p*(x — €)*™ + n?(x + €)*™2 where p,n,my, my are positive

integers and xo is the critical point of P(z). Then,
P'(2)(z — 20) > Cemym, min{p? n*}(x — 0)?

for a constant C. ) m, > 0 dependent on €, my and mq, but independent of p and n.

Lemma 4.3.19. Let P(x) = p*(xz — €)™ + n?(x + €)?™2 for positive integers p,n,my, msy.

Let xq be the critical point of P(z). Let |x| < 2e. Then,
P'(z)(x — 20) > C(p*(x — 20)*™ + n*(z — 20)*™)

for a positive constant C' independent of p and n.

Lemma 4.3.19 will follow from breaking the estimate up into the cases when |z| < ¢ and

when |z| > . We will need Lemma 4.3.20 for the case when |z| < ¢ to prove Lemma 4.3.19.
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Lemma 4.3.20. Let Y, Z > 0 with Z >Y and m a positive integer. Then,
(Y _ Z)Qm—l Z Y2m—1 o Z?m—l'
Remark 4.3.21. Note that Y*™~1 — Z2m=1 s negative, so we will have to be careful using
this estimate with inequalities.
We will need Lemma 4.3.22 for when |z| > € to prove Lemma 4.3.19.
Lemma 4.3.22. Let1 >Y > —1,2 > Z > 1 and my and msy be positive integer. There
exists a C' > 0 such that

(Y + 1?7 Z = 1) 4 (Z 4+ 1) (A=Y > Oz = Y)Pm

Once we have both lemmas, we can combine the results from Lemma 4.3.18 and 4.3.19 to
get Proposition 4.3.15.

We will begin by proving Lemmas 4.3.20 and 4.3.22, since they will be needed for Lemma
4.3.19.

Proof of Lemma 4.3.20. We will do a proof by induction. Recall that for this lemma Y, Z > 0

with Z > Y and m a positive integer. For m = 2,

Y -2P=Y3-3Y*Z+3v2*-27°

Zyg_ng

since Y27 < Y Z2.
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Suppose (Y — Z)?m~1 > y2m=1 _ 72m=1 holds for arbitrary m > 2. Then,

YV =2y =Y - 2" (Y - Z)?
> (Y2m—1 N Z2m—1)(Y N Z)Q
= (Y*" ! — 22" (Y2 - 2Y Z + Z7)
— y2mtl _gy2my o y2molg2 | gimely2 | oy p2m o p2mil
— y2m+l _ g2mtl (_2Y2mZ L y2m-lg? _ p2m-ly2 4 2YZQm)

Z Y2m+1 _ Z2m+1
if —2Y?mz yy?m-172 __ 72m=1y2 L9y 7?m >(0.ForY,Z >0and Z >Y

—2Y2mZ + YmelzZ - Z2mfly2 4 2Y22m — Yz(QZmel + Y2m72Z o 2y2m71 - Z2m72y)

— YZ(Z(QZQm*Q 4 Y2m72) - Y(2y2m72 4 Z2m72)) Z 0

]

Proof of Lemma 4.3.22. Recall we have that 1 >Y > —1,2 > Z > 1, and m; and my are
positive integers. Let Z —Y = and 1 — Y = ¢d, so that Z — 1 = (1 — ¢)d. Note that

(1—¢)>0,¢c>0,and § > 0. Then,

(Z o Y)—(le—l) (Y + 1>2m2—1(Z o 1)2m1—1 + (Z + 1)2m2—1<1 o Y)2m1—1

— (Y + 1>2m271<1 - C)lefl i (Z + 1)2m27102m171.
If Y >0, then
(Y + 1)1 — o)™ (Z 4 1)22i?mt > (1 =)t g 2™l >0 (4.3.23)

for a constant C' > 0 independent of Y, Z. If Y <0, then ¢ > %, since Z < 2. Using this and
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that Z > 1 gives
(Y _|_ 1)2m2—1(1 _ C)le—l + (Z + 1)2m2—102m1—1 Z 22m2—12—(2m1—1) Z 22m2—2m1' (4324)

Combining the estimates from (4.3.23) and (4.3.24) gives that there is a constant C' > 0 such

that
(Z =Y) CmD[(y 1) Z — 1) 4 (Z + 1)1 -Y)™ 7 >C (4.3.25)
for —1 <Y < 1. Multiplying by (Z — Y)®™=1 on both sides of (4.3.25) gives
(Y +1)*m2 Yz — 1)t (Z + 1) (1Y)t > 0(Z - y)*m!

as desired. O

Proof of Lemma 4.3.19. Recall
P(z) = p*(x — &)*™ 4+ n*(z + £)*™.
From the definition of P(z) note that the critical point zy will satisfy,
2mp? (zg — €)*™ 1 + 2mpn® (o + €)™~ = 0. (4.3.26)
Calculating P'(z)(z — xo) gives

P'(z)(x — m9) = [2mp?*(x — £)*™ 7 + 2man®(z + €)*™ | (2 — 20)

= [2mp*((z — o) + (w0 — €)™ " + 2man®((x — m9) + (0 + €))*™ '] (z — o).

Note that (zo—e) < 0 and (zg+¢) > 0. This implies if z < g, then ((z—x¢)+(zo—¢))*™ ! (x—

79) > (x — 2)*™ + (29 — €)*™ (& — x0) holds, since both (z — ) < 0 and (zy —¢) < 0.
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Similarly, if z > x¢, then ((z —z)+ (xo+¢))*™2 (x—20) > (x—x0)*™2 + (20 +2)?"2 " (z —x0)
holds, since both (z — x¢) > 0 and (xy +¢) > 0.

Note that if z = ¢, then

((x — o) + (w9 — €)™z —20) =0 = (. — 20)*™ + (w0 — &)™ Ha —x). (4.3.27)

Additionally, if z = —¢, then

(. — 20) + (w0 +)*™ o —20) =0 = (. — 20)*™ + (20 — )" (1 — ). (4.3.28)

If e > x > 2, then using the Lemma 4.3.20 and (4.3.27)

((x — m0) + (v0 — €)™z — 20) > (7 — 20)*™ + (20 — )*™ (2 — 70).

Note that = — zg is positive, so even though (x — x)*™ ! + (27 — £)*™~! is negative the
inequality holds. Similarly, if —¢ < x < xg, then using Lemma 4.3.20 with Y = (z — x),

Z = —(e — xp) and (4.3.28) gives

((z = x0) + (w0 +))*™*Ha — 20) = (w0 — @) + (—& — 20))*™* (o — 2)

v

(zo — 2)*™ + (=& — m0)*™* (2 — )

= (7 —20)* + (z0 + £)*™ (2 — 20).
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Combining these results gives

P'(z)(z — )
=[2mip*((z — 20) + (zo — €))*™ " + 2man®((x — o) + (2o +€))*™ ] (z — 20)
>2mp?[(x — 20)*™ + (zo — €)™ (& — mp)] + 2man®[(x — x0)*™ + (20 +€)*™ H(z — 20))]
—=2(myp?(x — 10)>™ +man®(z — 20)2™ + [map?(zo — €)7™ " + man®(z0 + )2 (x — 20))

=2m1p?(z — 20)*™ 4 2man?(z — 20)*™, by equation (4.3.26) (4.3.29)

as desired for —e <z < e.

Now, we need to handle the case when |x| > e. First we will consider z > ¢. In this case
P'(z)(x — x0) > 2mon®(z — 9)*™ (4.3.30)

since z + ¢ > x — y. Our goal will be to show
P'(z)(z — 20) > Cp*(x — 20)*™ (z — x) (4.3.31)

for 2¢ > x > . The idea will be to replace n in the equation for P'(x) with p. We will use
(4.3.26) to get

)

m2n2 = —2m1p2(xo — & To + 8)7(2m271)- (4-3-32)

Substituting (4.3.32) into the equation for P’'(x) gives
P'(z) = 2mp?((x — &)*™ ™ — (x + &)*™2 7 (wg — )2™ (g + &)~ m27Y)

2m1p2

= m((l' — E)lefl(;po + 6)2m271 + (x + E)ngfl(g o x0)2m171)' (4.3'33)

The case for xg = —¢ is when p = 0 and the case for g = ¢ is whenn =0 and x — e = z — x,.

In both cases (4.3.31) holds. Now, let g =Yecand z =Zefor 1 >Y > —land 2> Z > 1.
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Then,

/ 2mypPe?™ ! 2ma—1 2m1—1 2ma—1 2mq—1

Note that x — zg = (Z — Y)e. Using Lemma 4.3.22 and noting 0 < (Y + 1) < 2 gives

Iy p2e?mi 1 .
P’(x)(l‘ — $0) >C ;2m271 (Z — Y)2 1($ o xO)
2m m
> C22m211p2(x — 1p)P™ (4.3.35)
for a constant C' > 0. Hence,
P'(z)(z — 20) > Op*(x — 10)*™ (4.3.36)

as desired for C' > 0 independent of p and n. Combining (4.3.36) and (4.3.30) gives

P'(z)(x — 20) > C(p*(x — 10)*™ + 2man?(x — 30)*™) (4.3.37)

for 26 >z > .

If z < —e, then (z —¢) < (x — x0) < 0. So,

P'(z)(x — z0) = 2mup*(x — £)*™ N (z — x0) > 2mup*(x — 10)*™. (4.3.38)

Our goal will be to show

P'(z) = 2mip*(z — &)*™ 1 + 2mon?(z + £)*™2 1 < Cn?(x — 3o)?™2 ! (4.3.39)

since P'(z) < 0 and (z — o) < 0. Let y = —x and yo = —x. Then, (4.3.39) is equivalent to
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showing

Pl(y) _ 2m1p2(y + 6)27711—1 + 2m2n2(y . 8)2m2_1 Z C’n2(y o y0)2m2—1 (4340)

for 2 > y > . Now (4.3.36) tells us that (4.3.40) holds by swapping my with m; and p with
n. Combining (4.3.40) and (4.3.38) gives

P'(z)(z — x0) > C(p*(x — 20)*™ + n*(z — 20)*™) (4.3.41)

for —2¢ < x < —¢ for a constant C' > 0 independent of p and n. Combining the estimates

from (4.3.29), (4.3.37) and (4.3.41) gives

P'(z)(z —2) > C(p*(z — 20)*™ + n*(z — 20)*™)

for |z| < 2e for a constant C' > 0 independent of p and n. O

Proof of Lemma 4.5.18. Recall P(x) = p*(z — &)*™ + n*(x + €)*™2. Let m = min(mq, my).

Using the Taylor approximation theorem gives

P'(z)(z — x0) = [P'(x0) + P"(Z)(x — x0)|(x — 20), for T between zy and x
= [2m1(2m1 — D)p*(& — )™ 2 + 2my(2my — 1)n?(T + )72 2] (2 — x0)?
> 2m(2m — 1) min{n? p*}[(Z — €)*™ % + (& + )*™ 2] (z — x0)?
> 2m(2m — 1) min{n?, p*} min{e?™ 72 £ 2} (x — 14)*

= Ceny.my min{n?, p*}H(z — 29)*

for a positive constant C. ,,, m, independent of p and n. n
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4.3.5 Summary of local smoothing estimates

Piecing together the estimates we get perfect local smoothing in the z-direction. Fur-
thermore we get perfect local smoothing away from a neighborhood of [—¢,¢] in the 6,,6_

directions. Combining the estimates in (4.3.13), (4.3.14), and (4.3.16) gives Lemma 4.3.42.

Lemma 4.3.42 (Local Smoothing away from trapping). For any § > 0
T
/ 1) 720,72 + |[(2) ™ xs(2) D, ullF2 + [[(2) ™ xs(2)Dp_ul|F2dt < Crsclluol 72
0

where xs5(x) is a cutoff function satisfying xs(x) =0 for x € [ — 6,6 + 6] and xs5(x) =1 for

x ¢ [—c—26,e+26]. The L? and H'? norms are in the variables x,0_ and 0. .

What is shown is slightly stronger. It says that for each frequency w,, there is local

smoothing away from the critical point, x,,, of the potential p*V, (z) + n*V_(z). Formally,

T o T
4\uw3ﬂmm@%ﬁw)ﬁ+§j[ﬂ W@3ﬂ1@—xmmennmmM;mw}
p,n

o0 T
+y [ /0 1) =227 (@ = 2p0) ™ PUpn] T2y + [{0) 22772 (2 = 2p0) ™00, Iiz@)dt}
p,n

S C’T,zs,m

‘UOH?'—II/Q(@’76+707)'

Now let m; = ms. Ignoring the possible better estimates from the

T
[ a2 ming,n o — )l
0

we expect that due to the localizing term of (z — x,,)™ that

T
AHM@M@M%+HM@W%M%¢

<Cr(|[{p)™ " Vg pal 72 + [1)™ g

|%2 + ||u0,p,n||§.[1/2) (4343)
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to match with the estimate in [CW13] where x(z) € C2°(R) with x(xz) =1 on [—¢,¢£].

Set h™2? = p?> + n? and 4, ,(7) = upn(z + ,,). Then, i,,(z) solves
(Dy + D2+ p*Vi(x + xp0) + 02V (2 + 2p0) + Vi(T + 2p0))lpn = 0.

Let %n(a:) =p*Vi(z +zp,) +n*V_(z +x,,) and Vi(z) = Vi(z + Tpn). We have \7p’7n(0) =0

and V() > h~22*". Since this is just shifting w,,,,

o0 T T
> { / ()220t |22t + / ()2 2™, |2 + [[(2) =2 Mg, | 2adt
on LJO 0

00 T
+ { /0 () 7> min{p, n} iy, |72dt | < Creml[uoll32-
p,n

Using the new notation (4.3.43) holds, if

T
| I @) Badt < Q0™ e + llmmolps)  (43.4)
0

where x(z) € C*(R) with y(z) = 1 near x = 0. The key reason for this change is that it
allows us to consider p,n at the same time and makes the critical point for f/pm at x =0 for

all p,n. This means that when h — 0 the critical point is fixed.

4.4 Estimating at the critical point

4.4.1 Low Frequency Estimate

We want to break up w into high and low angular frequency parts. The idea is that if
the angular frequency is low compared to the radial frequency, then we can estimate the
angular derivative by the radial derivative, which we have an estimate for, and an error term
which is estimated similar to the high frequency part. In this situation we have two angular
directions and both affect the nature of the trapping. This issue is one of the reasons to

consider h=2 = p? + n?. If h is small, then the total angular frequency is large. Next, we
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will formalize the decomposition into high and low frequency parts and show that the high
frequency estimate bounds the low frequency estimate.

Define

Upi = 77Z)(th)a7 Uo = (1 - 1/}<th))17“
where ¥(r) € C2°(R) which is 1 for |r| <&’ and vanishes for |r| < 2¢’ for ¢’ > 0 small. Then,

(Dy + D2+ Vo + Viuio = [D? + Vi + Vi, (1 — )it = [V + Vi, =)@t = b Ly (@),
(4.4.1)

Since f/pm = O(h™?), when we take the commutator L, is a pseudo-differential operator
(with parameter h) of order zero such that the support of the symbol of L; is contained in
{0/ (h€) # 0} C {e’ < h|¢| < 2¢'}. Hence, |D,| ~ h™! on the wavefront set of L.

Now, we redo the positive commutator argument with a cutoff y(x) with x(z) = 1 near
r = 0 and x(z) = 0 away from z = 0 with x'/? still smooth. Let B = f(x)d,, where

f(z) = arctan(z), and
T ~ ~
G= / (X[D¢ + D3 + Vo + Vi, Blug, wo)dt. (4.4.2)
0
Then,

T ) . T
G = / (x(—2(z)20? — Vo o f (@) = Vi f(2)) o, wio) dt + / (—xf"(2)Opugo, wo ) dt
0 0

T
< [ 2402 = V@) = V7))t it + oy (143
0

for a constant Cp > 0 dependent on 7. The second line in (4.4.3) follows from the esti-

mate (3.2.7). Recall that arctan(z) and ‘71;/,71 have opposite signs, so —yx arctan(x)f/p”n > 0.
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Additionally, |xV'f(z)| < C for some constant C' independent of p and n. Hence,

/O O(=2() 202 = V7 £ () = X VL) Yt vt

T
> / (—2x(2) "* 020, wo)dt — Cp||uol|7- (4.4.4)
0

for a constant Cr independent of p and n, but dependent on 7. On the microsupport of wy,,

|1/h| < |D,|. The Garding inequality implies that there is some C,C’ > 0 such that
(h™2 X U0, wio) < —C{x(2) 2% U0, Upo) + C'/||ulo||§{1/2(x). (4.4.5)

Hence,

T T
/ (2ot < = [ €Oy 20 )t + €l By
0

<C/ (X(=2(2) 7202 = V. f (&) = VI (2))tio, wio)dt + Ol Jusol 5712 x)

=0 [ XD+ D24 Tyt Vo Bl i)+ Crlllyey
0

The first line above follows from (4.4.5), the second line follows from (4.4.4), and the last line

follows from (4.4.3). Rearranging gives,
T T ~ ~
/ (W™ xugo, K uge)dt < CTHUOHEI/Q + C‘ / (X|D; + D2+ V,. + Vi, Blugo, ugo)dt|.
0 0
Next we unpack the commutator in G another way. Recall,

T T
G :/ (X(D; + D2 + V., + Vi) By, ugo)dt — / (XB(D; + D2+ V,, . + V1 )y, o) dt
0 0

= Gl + GQ.
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Integrating by parts with the D; and D? term in G, gives

T T
G| < / <xBulo,(Dt+D2+v;,n+v1>ul0>dt‘+2‘ / (Buto, X/ Orurs)
0 0

T
+ / (Bus, x"ulo>czt‘ N ‘<Bulo, )l
0

Integrating by parts with B in G5 gives

T
Gy g\ [ (D24 T (xf(x))'umdt}

T
+ / (xBuyo, (D; + D2+ V,,, + Vl)ulo)dt'.
0

Combining the estimates for Gy and G5 gives

T T
|G| 32’ / (xBuy,, (D; + D? + Vo + Vl)ulo>dt’ + 2‘ / (Buy,, X’axuh)dt’ + ‘(Bulo, o) |&
0 0

T T
+ / <Buloy X”ulo>dt' + ‘ / <(Dt + Di + V;o,n + Vvl)ulm (Xf(x))/ulo>dt‘
0 0

Recall that B = arctan(z)d,. Since arctan(z) is bounded, x'(z) is bounded, and there is

perfect local smoothing in the xz-direction by Lemma 4.3.42,

T T
/ <Bu10,2x’6mum>dt‘ <C / / () 7320, al*dzdt < Cr||uo| |21 (4.4.6)
0 0 R

Since x”,arctan(x) are bounded, using energy estimates and (4.4.6) gives

T T
‘/ (Buy,, 2x'8$ulo)dt' + ‘/ /(Bulo,x"ul()dt‘ < C’T||u0||§{1/2.
0 o Jr

Next, recall that (D, + D? + V)u,, = h™'Ly (). Let ¢ be a smooth, even, compactly

supported bump function with ¢(s) = 1 on supp (¢/).
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1=

Figure 4.2: Comparing ¢, 1 — ¢ and ¥

The idea is that supp (¢') C supp (¥) C {¢€ € R|i)(€) = 1}. This implies that
Lyp(hD,) = Ly + O(h™).

Let ¥ be a smooth compactly supported function such that x(s) = 1 on supp (x). This
construction is similar to ¢ so that supp (x’) C supp (x) C {z € R|x(z) = 1}.

Hence,

T
/<h1L1ulo,(xarctan(ac))’ulo}dt‘
0

T
/ (R Lyapuye, (¥ arctan(x))'ulo>dt‘ + O(h™)||uo| |§{1/2
0

T
/ (h_l)M(LﬁZ)ulo, (x arctan(m))'ulo>dt‘ + (9(h°°)||uo||ip/2
0
T B T
< C/ \|h_1>ZL1¢ulo|]2dt + C/ 16% arctan(a:))'uloH?dt + C’THuOqul/Q
0 0

T
SC/ R~ ) [*dt + Cr|luol |3 2
0

The estimate in the last line follows because 0 < (1 — ) < 0, arctan(z), arctan’(z) are
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bounded, and that supp (x) C {x = 1}. Combining the estimates gives,

T T
/ <h_2xul07 ulo>dt S CT||UO||?_[1/2 + C / <X[Dt + Dz + V;?,n + ‘/la B]uloa ulo>dt‘
0 0

T T
< CrlluollZpe + C / <XBUzo,h‘1L1(ﬁ)>dt‘+C / 3= a2t

T
< CrlluollZe +C / (X B, b~ Ly (@) dt
0

T
+ C/ ||t xopa P dt
0

0

T T
< CrlluolZpe + C / 1l (@) 2de + C / Bt
0

for constants C, Cr > 0. Note that

T
/ xBuso|Pdt < CrlluolZuse
0

for some constant Cr by Lemma 4.3.42 so that,

T T
/ <h_2xulo,ulo)dt < CT||U0||§p/2 + C/ ||h_1)~<@/)ﬂ||2dt.
0 0

Since up; = Yu, we have

1A= Punil |72 < 1107 Runall7e < |-l |z + O ()| ful |2

That means
T T ~
/ X | Pt < C / 1 5l Pt + Coluol e
0 0

This implies that if

T T
|l < [ alade + Crlluol e (44.7)
0 0

then we can control the high and low frequency parts and get the necessary estimate.
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4.4.2 High Frequency Estimate

We will use the F'F™* argument employed in [CW13] and [CM14]. For this section we will
remove the tilde notation on x, ¥, u,V and V; for convenience. We are considering functions

x(z) supported near x = 0 and ¥ (hD,) micro-supported near 0. Let F'(t) be defined by

F(t)f(x) = x(2)1b(hDy)h~"e PV £ ()

it(D2+V+V;

where e~ ) is the Schrédinger propagator. We want to show that for some r we have

a mapping F' : L2 — L*([0,T])L?2, since then
1A= F (ol |22 (ozizz < ClIA™ o[22

gives (4.4.7) for r = 1/m + 1. We have such a mapping if and only if FF* : L2([0,T])L? —

L*([0,T])L2. Computing we get that

T
FF*f(z,t) = x(2)¢Y(hDy)h ™" /0 DIV (WD, ) x (@) f (z, 8)ds

and need to show that ||[FF*f||r2r2 < C||f||r2r2. Next let FF*f(x,t) = xu(v1 + vg) where

t
v = h%/ e DIV Y (WD, )y () f (z, s)ds,
0

and

T
v2 = h_zr/ - IDEV V(D) () f (z, 5)ds,
t

so that

(Dy + D2+ V + Vi)uj = Fih ™"y f.
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Then it is sufficient to estimate

|[x¥vj|| 22 < C|| fllr2Le-

Taking the Fourier transform in time and using Plancherel’s theorem, we have that it is

sufficient to estimate

HX¢@HL2L2 < OHJEHPL?-

This is the same as estimating

xR (1 £40 + DI+ V + Vi) x|z 0z < C. (4.4.8)

for C independent of 7. Hence, we get the desired result if we can show (4.4.8). Let —z = T7h?,

then (4.4.8) is equivalent to
[x(2)Y(hD,) (=2 £40 + (hD,)* + h*V + B2V) " (hD,) x(2)||omre < Ch72077. (4.4.9)

For convenience, let

Q = (hD,)? + h*V + h*V;.

Remark 4.4.10. From Section 3.3 we would expect the estimate to hold for r =1/(m+ 1)

in general. Fverything up until this point holds for any integer m > 2.

Now, we will consider the case m = 2 and r = 1/3. If we can show for h,d > 0 sufficiently

small that for ¢ € S(R") with compact support in {|(z,&)| < )}
1(Q — 2)™ul|2 > ChY3||@"ul| 12, 2 € [M — §, M + 6] (4.4.11)
for a constant C' > 0, then we have (4.4.9). Instead we will prove

Q1 — 2)¢“ul|r2 > ChY?|| 0 ul| 2 (4.4.12)
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for

Q1 = (hD,)* + h*V, (4.4.13)

but this implies (4.4.11). Note that V; = O(1), h?V; = O(h?). If (4.4.12) holds, then

1@ = 2)¢"ullzz 2 [[(Q1 — 2)¢"ullze — O(R?)||"ullr2 > ChY?||0"u| 2

showing (4.4.11). We will get (4.4.12) by computing the commutator, |([Q; — z,a*]v,v)]| for
an appropriate symbol a. This is where we will have to use Lemma 2.3.24 and specifically
equation (2.3.25). In the following sections we define the symbol a to give the right properties

and then calculate the terms in the commutator using Lemma 2.3.24.

Remark 4.4.14. Away from the microlocal resolvent estimate in (4.4.11), Q@ = ¢ for a non-
trapping symbol 4. The gluing technique from [Chrl8] combined with (4.4.11) give Theorem
4.2.2

4.4.3 Defining the Commutant

For this section assume that |p| > |n| > 0 and h™2 = p? + n?. The situation where
In| > |p| > 0 will follow similarly. We will also introduce a second parameter h such that
h > h. When n = 0 we then only have a single term affecting the potential so we can use
the estimates from [CW13]. Furthermore, we will consider case the where m = 2 so that
—V'(z) = E1x — Ex2? + Esz3. We will give what Ey, F,, and Es3 are later. We will also be

using the change of variables,

We want to estimate the symbol {q,a} where ¢ = £ + h?V(z) and

=2 ((5)")a((5)" ) elone© = a0ME e @)
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where

such that

1, |$’ < €
Az) =

Ce
M—SA/Q, |z| > 2¢ey

A(x) is even, N (z) < 0 for x > 0, X'(z) > 0 for z < 0, C., is chosen so that A is smooth,
and 0 < x2(x) < 1 is smooth cutoff near 0. Note A(x) and all of its derivatives are bounded.

Furthermore,

A" (z)] < CL N (x)

for some constant C?, > 0 due to the construction of . Additionally, A" (x) = 0 for |z| < €.

4.4.4 Estimating the first term in the Commutator

Let B denote the blowdown map

(x,§) =B(X,E) = ((%)1/3)(’ <h>2/3E)

and let T} ; denote the unitary operator

000 = (3) " (3) )

>

so that if g € Sf/’gné%, then
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(Op n(y(z, (;p))

/27rh// By (1Y f)u(y)dydfﬂ(x)dx
P S N
:/;:TTISG//@%(XY)_ (%1/3 X+Y < >2/3 ) << )1/3y>%deEm(X)dX
Rl
T,

1/3 X+Y

i(x-v)z
/ZWh//e ( 2
L(X_Y)E (X+Y)
_ L(X-Y)E —
= | — eh oB =
o] [ maem(55

= (Opj (g0 B)(X, )(Thhu)(X) Thhu(X

A

- ) L u(Y)AY d=T, u(X)dX

Y)dYd=T, ju(X)dX

The first term in [@Q, A] is given by h Op¥{q, a} since we are using the h-Weyl quantization.

The estimate we want in the end is of the form
h{Op ¥ ({g,a})u, u) > Ch*hllul|3..

After estimating this term we will also have to deal with the other terms from the commutator.

To estimate this first term we will use the following process of estimates,

h{Op} ({g, a})(x, §)u(x), u(z)) = h{Op} ({g, a} o B)(X, E)T}, ju(X), T}, ju(X))
= h(%)l/?’(opg(gl)(x, E)T, ;u(X), T}, ju(X)) — Error Terms  (4.4.16)
> h*3h||u||22 — Error Terms (4.4.17)

> ChY2h||ul| 2%

Remark 4.4.18. These estimates are not exact and avoid details that will be cleared up in

the calculations. However, it gives the idea of how we will estimate the first term in the

85



commutator.

The estimate in (4.4.16) will come from calculating {¢,a} o B and dealing with terms
supported away from the critical point. The main work of the section is the estimate in
(4.4.17). This will require us to carefully calculate a lower bound for g;. Once, we get the
correct lower bound we can use the process from [CW13] to get the estimate.

To start we will compute the Poisson bracket,

h{q,a}(z,&) = h(2£A(E) (W BRTVBN(X)] = B2V (2)A(X) [h*2/3}~z2/3)\(5)])Xz(:c)xg(ﬁ)Jrr
= <h2/3711/32§A(E))\(X) - hl/3ﬁ2/3h2v’(x)A(X)A(E)) Xo(@)xa(8) + 7

= gx2(x)x2(8) + 7. (4.4.19)

The r term contains the derivatives of ys which are supported away from the critical point.

Recall that V), (z) = —4p*(z — ¢)® — 4n’(z + €)?, so
~Vou(@)(@ — 20) = (4p*(z — )* + 4n’ (2 + £)*)(x — 2) > 0

from Proposition 4.3.15. This implies that —V'(x)A(X) > 0, however we will need to show
better bounds. Now, that we calculated {q,a} and defined g we want to prove the following

estimate,

Lemma 4.4.20. Let h*3h='3¢(X,Z;h) = (9o B)(X,Z; h) = g(x,&; h) where g is defined
in (4.4.19). Then,

Co(E2+ XY, |X|<en|E[<en
g1(X,Z;h) > (4.4.21)

C

o otherwise

where Cy > 0 independent of h and h.

Now to prove the lemma we have to look at what happens to ¢ in the different cases for

86



-\ 2/3 1/3
A((%) f) and A((ﬁ) x) Hence, we have 4 different cases we need to look at.

h
1/3 2/3
1 ]x\f;ak<%> and]f\<15k(%>
1/3 2/3
2 |x\§§5A<%> and|£\>>5x<%>
1/3 2/3
3 |x\>>5k<%> and|§]<i€k<%>

After the blowdown map is applied this will give use the following regions for g o B

1. |X] <eyand |Z] <€)y
2. |X]| <eyand |Z] > ey
3. |X| > ey and |Z] < ey
4. |X| > ey and |E] > €y

This is why the blowdown map is used. It allows us to switch from h-dependent cases to non

h-dependent cases. To handle these cases we will need to provide estimates on —V'(z).
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Estimating —V'(x)

In this section we will need to find the critical point for V’(x). The critical point z,,, is

given by,

0= —4p2(xp7n — 6)3 — 4n2($p,n + 5)3

(1 N
p7n E —)
1- /=%
. p2/3 _n2/3
pn p2/3 1+ n2/3

Before shifting the function —V'(z) we have,

2V//(xp,n) 2n2p4/3 +p2n4/3
By = =t = 48 (4.4.22)
3V”I<xp,n) _n2p2/3 —i—p2n2/3
—By = T = —24e T T (4.4.23)
YAV .
By = —4('%’ ) 4 4. (4.4.24)

The choice of Ej is so that Ey > 0 when |p| > |n| > 0. We can use F1, Fy and E3 and the
fact that —V’(0) = 0 to define —V’(z). We are also going to drop the p,n and tilde notation

for the shifted V' function for convenience. This gives

—V'(2) = Byx — Eya® + Esa®. (4.4.25)

Recall that we are using h=2 = p? + n? and that £, > 0. We will want to prove the following
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lemma,

Lemma 4.4.26. Let |z| < 2e and —V'(x) = Eyx — Ey2? + Ezx3 where By, Ey and E3 are
defined in (4.4.22), (4.4.23), and (4.4.24) respectively. We have the following estimate,

—h*V'(z)A(X) > R? (%Ele(X) + 1—1033:531\()())

= g (%xA(X) + a2 A(X )> : (4.4.27)

Remark 4.4.28. The choice of 1—10 is mot optimal, but is sufficient for the estimates needed

i this thesis.

Proof of Lemma 4.4.26. We want to show that
—V'(2)AN(X) = (B, — Fox + Esz®)zA(X) > kB zA(X) + kEsz3A(X)

for some constants k,l;: > (0. This will hold if

f(x):=((1 = k)E, — Eyx + E3(1 — k)2*) > 0,

since zA(X) > 0. Now f(z) is a quadratic function in x, so we will show that for k,k

sufficiently small that the minimum of f(z) > 0 for all [p| > |n| > 0. First note that the

minimum occurs at Es/((1 — k)2E3). The minimum is then,

[ B L B
f<(1 _ 15)2E3> =(1-hE A(1 — k) By

2nQp4/3 +p2n4/3 24262(—n2p2/3 +p2n2/3)2

(p?/3 4+ n2/3)2 o 16(1 — k) (p*/3 + n2/3)2(p? + n2)

942 3(p2n2/3 — n2p2/3)2
= (23 8232 2(1_]{7)(”2194/3‘1'1)2”4/3)—( " = wp )) .
(p?/3 + n?/3) 2(1 — k) (p® + n?)

(4.4.29)

= (1 —k)48¢

Let d = & or equivalently n = dp. Since |p| > |n| > 0, we have that —1 < d < 1. Substituting
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n = dp into (4.4.29) to get rid of n gives

E, _ 24e 4/3 2\, 10/3 3(d*? — d*)’p 16/3
f((l —12)2E3) (L4 d?3)2pi3 (2( T dp (2 k) (1 + d2)p? )

(1-
_ (214id:;§)22 (2(1 C k)1 + ) — ( )( 1f;/j )) (4.4.30)

24ed*/3p? >0
1+ 23)2 =

Notice that

for all d. This implies that

(2(1 — k)(1+d*?) — (2(13_ @) (“&fgjﬂ) >0

forall -1 <d <1,if

21 — k) — _ >0
2(1 — k)
Taking k = k = 1/10 gives 2(1 — k) — 5525 = 18/10 = 30/18 = 2/15 > 0. Hence, f(z) >
for all  and |p| > |n| > 0. This proves Lemma 4.4.26. O

Next we want to estimate g o B using the lemma. This idea follows the “blow-down” map
used in [CW13] which is described in section 3. We will do this by breaking up into the 4

cases.

Remark 4.4.31. In [CW13] and [CM14], estimates are done initially in the X, = variables
and then B~ is used to get back to the initial symbol in the x and & variables. We will avoid
this method, since it was easier to get inequalities initially in the x and & variables and then

use B.
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Case 1
1/3 2/3
Let |z| < ey (%) and || < ey (%) . In this case

g = W2PRV32eA ( (%) 2/35) A ( (%) 1/3:5) — RVBRBR2V () A ( (%) 1/3x) A ( (%) 2/35)

- B 2/3 - ha1/3
:h2/3h1/32§(ﬁ) £_h1/3h2/3h2vl(x)<z) .

~ 2F 2
> h (252 + 5—E;IL’2 + gl’4>

where we use (4.4.26) to get the last inequality. After applying the blowdown map we get,

goB(X,E)>2n*PhPE? 4 %W?’BU?’X? + §h4/3ﬁl/3X4
3

. )
> pA3p =13 (252 + 5X4> (4.4.32)
for |[X| <ey and |Z] <ey.

Case 2

1/3 2/3
When |z| < 5A<%> and |£] > e, (%) :

g> oR2/3]1/3

h 2/3 - h2/3 _ -
(1)) = 2 (cnfy ] = 2t

After applying the blowdown map, we get
goB(X,E) > 2e2p*3p~1/3 4.4.33
A

for | X| < ey and |Z| > €.
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Case 3

1/3 2/3
When |z| > 5,\<%) and [£] < 5,\<%) :

9> h1/3ﬁ2/3<h2v'(x))A(<%)” 3:5).

By (4.4.26),

(2B 2 foy 1/
S pl/3g2sf et 43 n . n
g > hBh (5E333+5$ )A<<h> g;> (4.4.34)

Using the bounds on |A(X)], |z| and the fact = and A(X) have the same signs we get that

(")

After applying the blowdown map, we get

2 ~ 2 ~
g > gh4/3h_1/38§\ > 5€§h4/3h_1/3.

2 -
goB(X,2) > gg‘;h‘*/?’h—l/?’ (4.4.35)
for | X| > ey and |E] < e,.

Case J

1/3 2/3
When |z| > e, <%) and €] > e <%> :

; h h - , i i
g = <2§h2/3h1/3€A((E)2/3€>A((ﬁ)l/i’)w) N h2/3h1/3(h2V (ZE))A<<E>1/SZE>)\<(E)2/3§>)
<2h2/3ﬁ1/305m|5| . 52/3h1/3]h2V’(:v)]CEAgA>

[(B) P [OR&SRE

v
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Using Lemma 4.4.26 gives

_ ORABH1/3CL NE 2Cepen h4/3ﬁ_1/3]X]3
goB(X,E) > < |X‘3/2* +—2 EEE (4.4.36)
First, consider the case when | X||3‘/2 > 1. In this case
_ 2h4/3il_1/305,\5)\’5‘ 2055)\6)\ h4/3if1/3\X]3
goB(X,Z) > ( X[ + EEE
> 20, exh*3h1/3.
Now, consider the case when ! ‘| | > 1. In this case
AR NE 2Cepen h4/3l~f1/3|X]3
goB(X,Z) > 2 +
X[ B
26’
- A pa3p-1ss, (4.4.37)

Using both estimates and applying the blowdown map we get,

goB(X,Z) > ChY3p~13

for | X| > e, and |Z| > €, where C} is a positive constant independent of h.

Combining Estimates

Now, define g; such that g(z, &) = (g o B)(X,Z) = h*3h~1/3¢;(X,Z). Then, combining
the estimates from (4.4.32), (4.4.33), (4.4.35), and (4.4.37) we get

Co(E2+ X?), |X|<eyand |E] <e)y
gi1(X,Esh) > (4.4.38)

Cy, else
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for a positive C, > 0 independent of / and h. Now, that we have the bounds lower bound of
g1 we can use Lemma 2.5 and Lemma 2.6 from [CW13].

We will need the following lemma for the final estimate,

Lemma 4.4.39. Let 7 = (951/32/3(55/3). For h > 0 sufficiently small, there exists ¢ > 0 such
that

(Op ¥ (g1 (1 + 7))u,u) > ch*3|ul|3,
uniformly as h | 0.
The addition of the 7 term will be needed to control the third order term.

Proof. Note that 7 = (931/372/3@5/3), so take h sufficiently small so that 1 +7 > ¢, > 0 for
some constant ¢,. Using that 1+7 > ¢, > 0 and the estimate in (4.4.38), gives that g (1+7) is
elliptic when |X| > €, or |Z| > €,. This implies that there is a constant C' > 0 independent of
h > 0 such that if (Op¥(g1(1+7))u, u) < Cl[ul[72, u has semiclassical wavefront set contained
in the set S = {(X,Z) : |[X| <ey/2and [Z] <e,/2}. On S, g1(1 +7) = (22 4+ X! K for a

strictly positive symbol K,. Note that the Weyl quantization has the convenient feature that
(Op¥((Z* + X" K2)u,u) = (Op ¥ (K,)* (D% + X*)Op ¥ (Ky)u, u) + O(h?).
Additionally, as shown in Lemma A.2 of [CW13]
((W*D3 + XY, u) > h*[u] 2.

Suppose v has semiclassical wavefront set contained in the set S = {(X,Z) : |X]| <

ex/2 and |Z| < £,/2}. Let ¢ € C(R?) be a cutoff function such that ¢ = 1 on S and
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¢ =0 when | X| > ¢, or |Z| > e,. Then,

(Op 7 (91(L+7))u, u)
=(0p (91 (1 + 7))p"u, " u) + (Opy (g1(1 + 7))(1 — ©)"u, (1 — ¢)"u)
+(Opj (g1 (1 + 7)) u, (1 — ) u) + (Op (g1 (1 + 7)) (1 — ¢)"u, ")
—(Op ¥ (K,) (R*D% + X*)Op ¥ (K,)¢"u, ¢"u) + O(h*)||ul[72 + O(h™)||ul[72
=((R* DX + X*")Op (Ky)¢"u, Op ¥ (Ky)p"u) + O(h)[[ul |72 + O(h>)||ul[7:
>0 e |Op (K ) ul |72 + O(h?)|[ul[72 + O(h™)|Jul 72
>0 |0 ull72 + O(W)[ul |72 + O(h)ul[7:

25 2 + O2) Jul 2 + O™) lul

for strictly positive constants ¢y, ¢ and ¢;. We use the fact that u has semiclassical wavefront
set contained in S to go from lines two and three to line four. We use the fact that K is
strictly positive to go from line five to six. Additionally, we use that u has semiclassical
wavefront set contained in S and ¢ = 1 on S to go from line six to seven. So, taking h

sufficiently small gives the desired result.

4.4.5 Estimating the third order term in the commutant

Due to using the Weyl calculus we only have odd ordered derivatives in the expansion of the
commutant. Furthermore, there are no mixed derivative terms since 0,0:¢ = 0. Additionally
8§q =0 for k > 3 and due to the construction of V, 9%q = 0 for k > 4. This means that the

only additional term we need to estimate is the third order term given by,

h°0pq0¢a = h” (@2h2V”’<x>A'”(<%)2/35)A((%)”3x) Xa(@)x2(6) + )
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where ry contains the terms with derivatives of xo. We can estimate h38§’q8§’a by estimating

es(,6) = —h3 ((%)2h2V”’(9:)A”’((%)2/3§>A<(%)1/333>). (4.4.40)

The goal for this section is the following lemma,

Lemma 4.4.41. For ey as defined in (4.4.40) we have
(e20 B)(X,Z)| < Co,h**h* 39, (X, E) (4.4.42)

for a positive constant C., > 0 independent of h and h.

Proof. Recall from the construction of A that for |s| < ey, A”(s) = 0. This means we just

need show 4.4.42 when |Z| > £,. Recall from Lemma 4.4.26 that

— AV (2)A(x) > g (%xA(X) + :E3A(X)> : (4.4.43)

Our goal will be to show that

o((3) v (G (™))

< hi3g (4.4.44)

where

( WA (E)A(X) — h1/3ﬁ2/3h2v’(x)A(X)>\(E)>.
Noting that A”(Z) = 0 for |Z| < ¢, and using Lemma 4.4.26, (4.4.44) holds if

hFLQ(h2V”/<5L‘))A”/(E)A(X)’ < KRA/3 (h4/3ﬁ1/3 + h1/3ﬁ2/3§ (%
3

TA(X) + x3A(X)) A’(E)> :
From the calculations on h?V'(x) we have

— h*V"(x) = 24(x — Ey/3E3). (4.4.45)

96



Noting that [A"(X)| < CZ A'(X) implies that (4.4.42) holds if

%mm 4 x3A(X)) >

‘24h712 (x — %)A(X)’ < 062;34/3 (h4/3le/3 + h1/3l~12/3§(
3

(4.4.46)

After the blowdown map, (4.4.46) holds if

- -, E
24RBROPXA(X) + ‘24hh2—2A(X)‘

3F;
. - -1 52 By = 152
< O, W3 WA3R=Y3 4 R2BRYBZ X A(X) + RYPRBZXPA(X) ).
- 5 Ey 5
(4.4.47)
We will first deal with the 24h*3h5/3 X A(X) term. If | X| < &, then
24hYBRPBXAN(X) < 24h*3R5/3632. (4.4.48)
If | X| > e, then
4/375/3 24 4/375/3 v3
2R PR X N(X) < SRYPROBXPN(X). (4.4.49)
X
Combining (4.4.48) and (4.4.49) gives
. - - - 152
240 PRPBXA(X) < CLRAH (PR + h4/3h*1/35X3A(X)) (4.4.50)

for a positive constant C,  independent of h.

Now we will handle the

24hh* L2 \(X)

term. First note that |A(X)] < |X]|. If |%X| <
h'/3, then

- E -
’24hh23—53A(X)‘ < 24h*3R2. (4.4.51)
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If |%X| > h'/3 then | X| > hl/g%. Noting that XA(X) > 0, gives

-y By -y [ 8Ey\?
24hh? —=A(X)| < KPR == ] XA(X).
i aCo| < i (52 ) XA)
Notice that
- (8Ey\? . -5 2E,
PR Z=2) XA(X) < BPRBRMZZEXAN(X
3E3 ( ) —_ 5E2 ( )7
if
o (38 < 26
3E;) — 5F;
This is equivalent to
2 = 2, 64F
B —hY32 >0
5 9F; —
Multiplying by 5/2 gives that we need
-1 2 160E2
B —hB—2>0.
1 0B, -
Recall from the proof of Lemma 4.4.26 that
E2
(1—-kE ——2—>0
41 — k)E;
for k =k = ﬁ). Taking h sufficiently small gives
-, (8Ey\? . -1 3 2F
RBR2( 222 ) XA(X) < RBR2PBRVBZELXA(X).
3E, (X) < 5E, (X)

Combining the estimates in (4.4.51) and (4.4.52) gives

‘24hﬁ2%A(X)' < Cé;;?L4/3 (h4/3l~f1/3 + h2/3l~zl/32&

: - EgXA(X))

for a positive constant C;, independent of h.
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Now combining (4.4.50) and (4.4.53) gives

- -, B
leg 0 B| < 24h*3RPBXA(X) + ‘24hh2372A(X)‘
3

< (CL, +Cl)RY? (h4/3ﬁ—1/3 + h”%”%%XA(X) + h4/3ir1/3§X3A(X))

3

where C,, = C}, + C,, > 0 and is independent of h. O

Lemma 4.4.41 implies that
Op¥(goB)+ Op¥(ez0B) =h**h720p ¥ (g1(1 + 7)) (4.4.54)
where 7 = (931/3,2/3(’55/3).

4.4.6 Final estimate

We will use (4.4.54) and Lemma 4.4.39 to prove the following lemma,

Lemma 4.4.55. For § > 0 sufficiently small and h > 0 sufficiently small, let p € S(R) have

compact support in {|(x,&)| < d}. Then there exists a C' > 0 such that
11(Q1 — 2)¢”ul| > Ch¥3||p"ul|, z € [M — 5, M + 4). (4.4.56)

Proof. Let v = ¢"u for ¢ chosen with support inside the set where y2(x)x2(§) = 1. Thus r

and 7y are supported away from the support of ¢. Recall that

(Opj (s)u, u) = (Op (s o B)(X, Z)T), ju(X), T, ju(X)) = (Op (s o B)(X, Z)u(X), u(X))
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for s € §1/32/3. Hence,

i([Q1 — z,a"]v,v) = 1(Op}({g, a})v,v) + (Op} (e2)v,v) + O(h™)|Jv][12
= (Op}(9)v,v) + (Op} (e2)v,v) + O(h™)|[v]|12
= (Opj(goB)v,v) +(Opj(ez 0 B)v,v) + O(h%)|[v][12
= PR3 0p Y (gi (14 7))v,v) + O(h™)||v][32, by (4.4.54)

> Ch*3h]|v||%,, by Lemma 4.4.39

for h sufficiently small. We are almost finished. Notice that

e =A((1) ) (1))t < ©

Hence,

([@1 = 2z, a"]v,v)| < [[(Q1 = 2)vl|z2 [[a”v][> < CHQ1 = 2)v]|z2 [[v]lz2.
So for fixed h > 0 sufficiently small,

(@1 = 2)vllze = CRY o] 2.
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APPENDIX

A.1 Fourier Transform

In this section we will define the Fourier transform and semiclassical Fourier transform

and explain the useful properties.

Definition A.1.1. If ¢ € ./(R"), then the Fourier transform of ¢ is

Fo(€) = p(€) = / =08 (1)

n

The inverse Fourier transform of a function ¢ € Z(R") is given by

x)=¢(r)= @) T.
(@) = ¢(0) = s [ (e

Definition A.1.2. If ¢ € (R"), then the semiclassical Fourier transform of ¢ is

Fugl@) = 4(©) = [ et Opla)da,

The inverse semiclassical Fourier transform of a function ¢ € . (R™) is given by

The Fourier Transform has the following nice properties,

Theorem A.1.3. For p € ./ (R")

(i)

(i)



(iii)
Fn((hD)%p) = " Ty
(iv)

1
(2mh)"

lellze = | F el 2

A useful property of this is that,
(hD,)*p = F; 1 (€ Fp) (). (A.1.4)

This allows the definition of Sobolev Spaces with non-integer values. Sobolev norms are

defined in the following way,

Definition A.1.5 (L*-based Sobolev Norm). Let k € N. Then the Sobolev norm of a function

1/2
]| 7 ::(Z/ \D%\%) .
lo|<k VR”

However, using the idea behind (A.1.4) and psuedo-differential operators and property

u on R™ 1s given by

(1v) we can extend the idea of Sobolev norms to non-integer k.

Definition A.1.6 (Generalized Sobolev Norm). Let s € R,. Then the Sobolev norm of a

function u on R™ is given by

||l

wi= (g [ ©17u(@)ac) "

where (£)* = (1 + £2)°.

Remark A.1.7. Notice that there is a factor of (£)* — oo as |£| — oo, so high frequency

estimates (|&| large) are what determines the regqularity.
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Theorem A.1.8 (Uncertainty Principle). We have

h
Sl Znfllee < llzsfllezll&; Fnf e

The uncertainty principle implies that you cannot arbitrarily localize in phase space. This

is an important barrier to the local smoothing estimates of the Schrédinger Equation.

A.2 Stationary Phase

Theorem A.2.1 (Rapid Decay Lemma 3.10 in [Zwol2]). Given functions a € CX(R), ¢ €

C>®(R) and h > 0 let

I = In(a, @) == / e adx.

R

If ¢'(z) # 0 on supp (a), then
I, = O(h*™) as h — 0.

Proof. The proof is based on integrating by parts multiple times, so we will follow the proof
from [Zwo12| almost line for line. To prove the theorem we will need to show that for each

positive integer N, there is a Cy such that |Ij,| < CnhY for all 0 < h < 1. Let

Note that this is where we require that ¢'(z) # 0, so that L is defined for all « € supp (a). L

was constructed so that

=I5
=

Le

I
o

This implies that applying L to % returns et S0,

[In| =

/(LNei;Lp)adx
R

/eiff(L*)Nada:
R
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where L* is the adjoint of L. Since a is smooth compactly supported and ¢ is smooth,
h.  a
L*CL = ——836(—,)
rop

is of size h. Hence, |I,| < Cyh". O

This theorem tells us that if the phase is not stationary, then we should expect rapid
decay as h — 0. This is because the integral will oscillate rapidly producing cancellations in
the integral. If ¢’ = 0 at a single point, then we should expect the integral to be determined
by the value at this point, since outside of this point the integral will be oscillating rapidly

and produce cancellations.

Theorem A.2.2. Let a € C°(R). Suppose that xo € supp (a) and ¢'(xy) = 0,¢"(xq) # 0.

Additionally, suppose ¢'(x) # 0 for all x € supp (a) \ {zo}. Then,

ip(z)

ma(ze) + O(h3/?).

/eifadx = (27rh)1/2‘90//(560)|_l/2e%sgn(soﬂ(x°))€
R

A.3 Laplacian

For a given Riemannian Manifold X without boundary with metric g and local coordinates

xy,- -+ ,x, the Laplace-Beltrami operator is given by
1 -
Ag= > —=09"/|9|9;
ZJ: vari

where ¢ is the i, j-th entry of the inverse of the metric g and |g| is the determinate of

the metric tensor. The volume form is given by dVol = \/|g|dz; - - - dx,,. Note that A, is
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essentially self adjoint since for u,v € .#(X),

1 .
A dVl:/ ——0;g" 01T dzy - - dx,,
/X quvdVo X%:(\/m g \/m]u)y\/m T v
- / Z (9ig” \/Eﬁju)@dxl - dz,
X
- / > (97 9l0ju) 0vda - - - dx,
X3
X5
- [ S o B0 -,
X3
1 g
— [0S = (@,Tglg"00) gl -
/X ; \/m( J ) 1
= / ul v dVol
X
since g is symmetric. In the multi-warped product case in this thesis the metric is

g=dr*+A_(x)%d0,* + A, (x)*do_ >

Then,

AL+ A
A, =0+ TA++@” + A ()05, + A(2) %05

and

dVol = A, (x)A_(z)dzdf,.do_.

There are two issues with this Laplacian. There is a first order derivative term and when we
integrate we need to be careful to include the volume form. We solve both of these issues by
conjugating by 7' = (A;(z)Az(z))"/? and studying the operator A = TAT ! instead of A.

After the conjugation
A=d*+A_ (x)’283+ + Ay (2)720; + Vi(x)
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for a potential term Vj(z). This eliminates the first order derivative at the cost of an added
potential term V;(z). However, this term V;(x) in our case does not harm the local smoothing
estimates. The removal of the first order derivative and volume form make studying A easier.

We will go over why we can study A instead of A. Note that T : L?*(X,dVol) —

L*(X,dxdf_df,) is an isometry since

/ (uf2dVol — / 2A, (2)A_(x)dzdd_do, — / Tuldzdd._do. .
X X X

However, T is not an isometry on H* norms when s # 0. We do not have ||T'u|

Hs(X,dwdf_doy) =

||| s (x.avor), since z-derivatives do hit the (A (z)A_(x))Y/?

terms. However, since g is
asymptotically Euclidean, there are some positive constants Cr and C'p-1 such that

1T

He(Xodzdo_doy) < Crl|ullms(x.avory and |G| s (x,azao_ao,) < Cr—1||T 10| gs(x,avery for

u € H*(X,dVol) and & € H*(X,dxdf_df.). Now, suppose @ solves

(D — Aa(t,z) =0 (A3.1)

(0, x) = tg(x)

for tg(z) € S(X,dxdf_db,). If u= T~ a, then

0= (D, — A)i(t, ) = (TDT™ — TAT VY = T(Dy — AT Tu = T(Dy — A)u.

and ug(x) = T~y (x) € H?(X,dVol). Therefore u is a solution to

(Dy — A)u(t,z) =0
(A.3.2)

u(0,x) = ug(x)
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This implies that if we can show

T
/0 1) 28l B aadt a8t < Clliol s oo

for some constant C' > 0 then,

T
/0 ||<I>_3/2u||§{1(X,dVol)dt < CIHUOH%I?B(X,dVol)

for some constants C’ > 0, which is the estimate in Theorem 4.2.1. Hence, we can get the

desired local smoothing estimates by studying solutions to (A.3.1).

A.4 Local Smoothing on R from Propagation

Theorem A.4.1. Suppose ug(x) € CP(R) and u(t, x) solves

(D¢ + DMu(t,z) =0

u(0,x) = ug(x)

where Dy = %at and D™ = Lo™. Suppose I is a compact interval. Then, for every T > 0

Pt

there exists a constant Cr such that

T
/ / (D)™ 2y (¢, 2)Pdadt < Crluo| .
0 I

Proof. Suppose ug(z) € C*(R) and u(t, z) solves
(Dy+ DM)u(t,x) =0
U(Oa QZ’) = UO(x)

where Dy = 10, and D' = 597, Let I = [I,, 1] where I, > I, and supp (uo) C [Us, U]

where U, > U,. Let xT € C°([1/2,2]) ,x~ € C°(]—2,—1/2]) and x € C*(]—1, 1]) such that
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0<x",x,x<1land

=D X2+ ) xT(/2) + x

Define x; (&) = x*(£/27) and x; (§) = x7(§/27). Let uj = .F 7 (xju), u; = F ' (x;0),
ufy = F (X o), uy = F ' (XJ o), @ =.F " (xt) and Gy = .F ' (xio) where we take the

Fourier transform in x only. Then,

o0 o0
=> ul +) uj +
j j
j=0 j=0
and
(o) o
= z:u’-L + Zu-_ + .
7,0 7,0
Jj=0 Jj=0

This division ensures that @} has support on [1/2(27),2(27)]. We will focus on v and the case
of u; will follow similarly. Note that u} solves (D, + D}")u; (t,z) = 0 with initial condition

uf (0, z) = ujy(x). Let

T
A = / / (DY (¢, 2) Pt
0 I

Then,

T
o (m=D/2, (1. 2) 2

A, /0 /I|<Dx) uj (t,z)[*dzdt
_ i g 1€ (m—1)/2~+ d
~5- || [ et

1 /7 4 .
- _/ / / e TE(1 €)M il (€)dg
T™Jo Jr|Jr »

2

dxdt

2

dzdt.

Now @, is supported near £ = 27. Specifically, supp (i) C [327,2(27)]. Let h = 1/27, so
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that @ is supported near " and supp (47 ) C [$h™*,2h7"]. Then,

2
8 (1 )M it (&)deE | dudt

1 (m— iwg —ite™ -

< 2—(1—|—4 D/ / / /Re CemiE ;o (€)dE
. 2
27T(1—1—4 (m— 1)/2/ / /R/e”ge_itﬁme‘iygu;fo(y)dydg

R
. 2
27T(1+4 (m— 1)/2/ / //ei[(x_y)f_tgm]u;fo(y)dydf
R JR

Take xo € C2° such that yo = 1 on support of xT, 0 < xo < 1, and supp (xo) = [1/3, 3]. Let

X;j0(§) = x0(€/27) = x0(h€). Then,

2
1 m— i[(x— —tEm
A 2_(1+4 ( 1/2/ / //e[( y)E—t€ ]u;fo(y)dydg
R JR
1 , m
L (14 4ty / S [ et ea@us s dea
27r R JR ’
1 , m
—(1+4(h (m~— 1)/2/ / //ez[(%_y)g_t6 ]ijo(f)dfujo(y)dy dxdt.
27T RJR ’

The introduction of yq is so that we can examine the integral kernel

2

dzdt

dxdt

dxdt.

dxdt

B Z/ei[(xy)gtfm}xm(f)df.
R

Set & = n/h. Then,

B, = E/Re;;[(x s NP
= E/G”Xo(n)dn
R

for ¢ = [(x —y)n — tn™/h™]. Now, ¢, = 0 when n = h((ﬁ;ty)

)ym=1. Take a smooth cutoff
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function Yo such that xo = 1 on supp (xo), 0 < Xo < 1 and supp (xo) = [1/4,4].

B = %Sm <h<<xﬂ;y))ml) /R er#x;0(n/h)dn
42 (1 ~ %o (h((x”:ty))m_I» /Ref?“"xj,o(n/h)dn
= %5(0 (h(%)m_j /Rei%(n)dn +O(h%).

This follows from rapid decay as h — 0 since ¢, # 0 on the support of

>

. (T —y)\m—1
1= %o(h ) )xolm).
( Xo ( i ) Xo(n)
Using the calculations for B gives

1
A; < —(1 4 4(hH)m=1/

o dxdt

My 0 () déufy )dy

m—1 2
(. —y)
(( i ) )“ﬁo(y)dy
dxdt+(9(h°°)||uj+70||%z

i %Xl(x)f(o (h < (xw;ty) ) m_1> ulo(y)dy 2

where x;(z) =1for x € I and x; =0 for = ¢ I.

1
<L a2y dadt + O(h) |2

1 e
— 1 4h—2 m—1)/2
5 (1+4h7%)

The issue here is that u;( does not have compact support. Let & € C2° such that ®(z) =1
on [U,, U] and supp (®) = [U, — €, U, + €] for € > 0 small and ® € C° such that & = 1 on
supp (®),supp (®) = [U, — 26, Uy + 2¢] and 0 < &, & < 1. Let

B~ [ put) (h(%)m> (1= B(3))usou)dy

110



Then,

B = [ paut) (h((mn;”)ml)(l—é(y» [ [ e ge un(azaay.

Let & =mn/h. Then,

/R %xxx»zo (h(ﬁ;ty))m_l) (=800) [ [ e )8 o)y

h((‘”ﬂ;y))m_l) [ ([ e = 2 in) =)y

By

Il
\

O(h™)|JuolIz-

due to rapid decay as h — 0, since (1 — ®(y))®(z) = 0 when y = z. Hence,

[ ) <h (=) ) B(y)uso(y)dy

+ O(h)[wfyl[72 + O(h™)Juol [

2
dxdt

1
A; < — (14 4h~2)m-1/2

For x7(x)Xo (h(%)mA))&)(y)ujyg(y) # 0 we need h(%)l/(m_l) € [1/4,4]. Hence, (v —

y) € [(h~1/4)™ ', (4h=")"1t]. Since ® # 0 for y € [U, — 2¢,U, + 2¢] we need z €
(W=t /4)™ 1t + (U, — 2¢), (4h™1)™ 1t + (U, + 2¢)]. This tells us that

@50 (=)™ ) dgua() # 0

mit

Io—(Up+2e) to t — —(Uq—2¢)

from ¢ = ¥t W-

This implies that the integral with respect to t is
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non-zero for at most C'//(h~1)™~! time for a constant C.

)% (h ( <In;ty) ) m_l) O(y)ujo(y)dy

[lujollZ2 + O((1/27)%) ol [7:

o 2
(h—Tym—1

dzdt

1
A; <—(1 4 4h~%)m=1/2

+O(h*)||ujollz> + O(h*)uo|[12

1 (o
< (1 d(p 2y m-D2___ =
_27'('( + ( ) ) (h_l)m_l

<C"lufyllZ2 + O((1/27)%°)| o |72

as j — oo and C” and C" are positive constants that can be chosen independent of j. These

estimates will hold for £ < 0. We have

T
= / / \(DI>(m’1)/2uj’ (t, ) |*dxdt
o Jr

< C"JufyllZz + O((1/27)%°) [ uo[Z2-

So,

T
//|(D Y =172y, tx|dxdt<ZA +ZA +/ /\ Y D20 ) |Pdadt
0 I

o0

<23 (ol + 02 Mnle) + [ [ 1D 000 0) Pz
0 I

=0

Now, 20" 37 ||ujoll. < Kluoll7> and 3772 O((1/27)%)||uo|[7. < K'l[ugl|7» for positive

constants K and K’. Additionally

/ /I (=025t x) Pdadt < 2T |uo| 2,

since [(£)(m~1/24| < ||. Combining the estimates gives

T
| [ 1ot o) Pasas < Crlul
0 I
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for a positive constant Cr as desired. [

A.5 Information on the Potentials V,,

We will start by showing that the set {x|V] () = 0 for some (p,n) € Z x Z\ (0,0)} is

dense in the interval [—e, €] where V,, ,(x) is defined in (4.3.1).

A.5.1 Critical Points are Dense in [—¢, €]

Let

o p2/@m=1) _ 2/(m=1)
pr =\ p2/@m=1) 1 p2/Cm-1) )’

Note that V) (ex,,) = 0. The set {z,,|(p,n) € Z x Z\ (0,0)} is dense in [~1,1]. Let
rze[-1,1,d>0,and k =2/(2m — 1).
If = —1, then |z —x,0| =0<d for p#0. If x =1, then |z — z,9| =0 < 6 for n # 0.
If x € (—1,1), let p = An. Then,

@ = 2pnl = (A" + Dz — (A" = 1)) /(A" + 1)| = [(A%(z = 1) + (2 + 1)) /(A" +1)].

Then A% = #£ > 0 gives |z — | = 0. However, £:L could be irrational.
Let |B — 21| < 2. Then,
1 6 J
(B(z — 1)+ (z + 1) /(A" +1)| < ‘ (ffx +§>(x— 1)+(x—|—1)' < '5(:5— 1)‘ <4

Now, f(z) = z* is a continuous function on (0, 00) and rational numbers are dense in R. This
implies for a given § > 0 that for all &' > 0 there exists ¢, € Z such that [(£2)/* —q/r| < &'
and for & > 0 sufficiently small, we have |(¥:2) — (¢/r)*| < 6/2. So, by choose ¢, so that &'

is sufficiently small we get

[ = g, = (4" + D)z — (A* = 1)) /(A +1)] < ‘GH :

—5/2>(x—1)+(x+1) <6

— X
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Multiplying z,,, by € completes the proof that

{x|V, .(x) = 0 for some (p,n) € Z x Z\ (0,0)}

is dense in [—¢,].

A.5.2 Nature of the critical points

Recall from Figure 2.3 we discussed the level sets of the Hamiltonian. In this case our
Hamiltonian will be given by &2 + h2V},,,(x). We can look at level sets if we fix the values of
p and n. Figure A.3 is an sketch of when the Hamiltonian is 0 for p = 0 and n = 0. Notice
that this is the situation where we have degenerate unstable critical points. However, we can
have the situation where p,n # 0.

In Figure A.4 we have the situation when p = n and when n > p. In this situation both
of the critical points will be non-degenerate unstable critical points. However, when n > p
we approach the degenerate unstable critical point given in Figure A.3. This combination
of the behavior when n/p — oo and when p = n makes the resolvent estimate difficult. We
expound on this in the next subsection.

Lets consider the case where m = 2 and we will use the calculations from Subsection
A.5.3. In this situation the level sets given in Figure A.3 and A.4 are roughly given by
€2 = p@=2m28(p — 2, )2 + (x — 1,,,)* where h™2 = p? 4+ n? and p ~ h™" where n > p. Near
the critical point the level sets are approximately given by +¢ a2 h?=20/3(z — ) if h # 0.
What makes the microlocal resolvent estimate in (4.4.12) hard is that while the critical point

is non-degenerate, as long as n > 0, the critical point acts like a degenerate point as h — 0.

A.5.3 Estimates of the Derivatives of the potential

In this section we show some estimates on the higher order derivatives of the potential.

These estimates will not be used to get the local smoothing result, however they provide
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Figure A.3: Level sets of &2 + h?V,,,(z) for p=0and n =10

§

n>=p p=n

Figure A.4: Level sets of &2 + h*V,, () for p=n and n > p

a heuristic for why this estimate is tough. They also show why we will need to employ a

two-parameter calculus to get the final estimate.

B (p2/(2m1)_n2/(2m1)

Recall z,,, = AT 2 /<2m1>) is the critical point of of V’(z). Suppose h is sufficiently

small with h? = ﬁ and |n| < |p| and k > 1 is an integer. If [n| > A" with 1 —=d >n >0
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for § > 0 small, then there exists a C’ > 0 independent of h (once h is sufficiently small) such
that
|h2‘/;)(’,? (2p,n)| > C'AE2MEM=R)/@m=1) (A.5.1)

If [n] < h™" then there exists a C' > 0 independent of h such that
1PV ()] < CRE2NEm=R)/Em=1), (A.5.2)

We will show these estimates and then explain why (A.5.1) is an issue to proving the local

smoothing estimate.

At the critical point

V;?(,]fz) (Tpn)

m— 2m—k m— 2m—k
_(__ 2m! S2m—k 2 —2np/2m1 42 2p?/2m=1
B (2m _ k)l p p2/2m71 + n2/2m—1 p2/2m71 + n2/2m—1 ’

Replacing the constants dependent on € and k& and m with C' we get

V(k)(x —cC n2p(4m—2/€)/(2m—1) + (_1)2m—k:p2n(4m—2k)/(2m—1)
p,n \p,n (pQ/(mel) + 712/(27”*1))27”*]“

First, let |n| > h™". Note that |p| ~ 1/h, but the exact relationship is dependent on n.

However, 1/h > |p| > 1/(2h) for all |n| < |p|. Then,

Ctlh72nh7(4m72k)/(2mfl) + (_1)2m7k02h72h777(4m72k)/(2m71)
(2h—2/@n=1))2m—k

p?n

Vil 2|
> Cl(h72h717(4m72k)/(2m71) ) (h(4mf2k)/(2mfl))

> Clhf2h(272n)(mek)/(mel)
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thn(4m72k)/(2mfl) term

for h sufficiently small and constants C;,Cy and C’ since the h~
dominates as h — 0 because k > 1. This gives the estimate in (A.5.1).
Now, let |n| < h~". Then,
h—2nh—(4m—2k)/(2m—1) 4 h—Qh—n(4m—2k)/(2m—1)
<h72/(2m71))2m7k ’

< O/h—Qh—n(4m—2k)/(2m—l)h(4m—2k)/(2m—1)

< C«/h—Zh(Z—Zn)(2m—k)/(2m—1) )

for positive constants C' and C".

Recall in Section 3.3 and (3.3.14) that we discussed a commutator argument with [a*, Q1]
where Q; = (hD,)*> +V — h?V; for V and Vi. Then [a¥, Q1] = h{a,q}* + h3r" where
r is dependent on the odd order derivatives of a and ¢, where ¢; is the symbol for Q).
In the multi-warped product case here, we will have the Q = (hD,)* + h*V,,, + O(h?)
where —V,,,, = p*(z — €)*™ + n*(z + ¢)*™. If we consider the case where m = 2, then
hir ~ h*(93ah®V®)) ~ h2/3(h*V®)). From [CW13], we expect and will show that the optimal

lower bound is (h{a, ¢ }"“u,u) > h*3||u||2,. However, from (A.5.1)
|h2/3(h2v(3))| > hZ/Sh(l—n)2/3 > h4/3

if 1 > n > 0. This makes estimating the higher order derivatives difficult and is the main
challenge in proving Theorem 4.2.2 for m > 2. The case of m = 2 was possible because we

were able show

, E
V(@) (@ — apn) > C(E;u ) + (2~ x))

in Lemma 4.4.26. This allowed us to bound the error term by h*V),  (z)(z — ) rather than
just h*2. The key to this estimate was handling the cubic term of V,,, when doing a Taylor

expansion, since it can have the wrong sign.
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