
LOCAL SMOOTHING OF THE SCHRÖDINGER EQUATION ON A
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ABSTRACT

Derrick Nowak: Local Smoothing of the Schrödinger Equation on a Multi-Warped Product
with Degenerate Trapping

(Under the direction of Hans Christianson)

Geodesic trapping is an obstruction to dispersive estimates for solutions to the Schrödinger

equation. In [CW13], Christianson and Wunsch prove a local smoothing estimate on a surface

of revolution with degenerate trapping. In this thesis, we look to extend this result to the case

of a multi-warped product with two infinite directions. A multi-warped product manifold

with one infinite direction was used in [CN22], where a local smoothing result was proven for

inflection-transmission type trapping studied initially by Christianson and Metcalfe in [CM14].

We construct a multi-warped product with two infinite ends where each warped piece has

degenerate trapping at different points in the radial direction. In the inflection-transmission

type trapping case, the trapping in each warped direction did not interact leaving the trapping

at just two points in the radial direction. However, in this thesis, the trapping is complicated.

The projection of all trapped trajectories onto the radial direction after separating variables

will be a countable dense subset of points in the interval [−ε, ε]. The main result of this thesis

is to show that while the trapping is more complicated, we gain the same local smoothing

estimates from [CW13] in each angular direction.

iii



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Brief History of Local Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Multi-Warped Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Geodesics and Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Pseudo-differential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Classical Pseudo-differential Operators . . . . . . . . . . . . . . . . . 19

2.3.2 h-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Two parameter calculus . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Functional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3: History of Local Smoothing Results . . . . . . . . . . . . . . . 36

3.1 General Local Smoothing Estimates . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Local Smoothing in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Local Smoothing on a Surface of Revolution with Degenerate Trapping . . . 41

3.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



3.4 Other Related Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Inflection Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Multi-Warped Inflection Trapping . . . . . . . . . . . . . . . . . . . . 52

Chapter 4: Multi-Warped Products with Two Infinite Ends . . . . . . . . 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Local smoothing away from trapping . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Norm conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Positive commutator argument . . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Estimates on the Potentials . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.5 Summary of local smoothing estimates . . . . . . . . . . . . . . . . . 74

4.4 Estimating at the critical point . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Low Frequency Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 High Frequency Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Defining the Commutant . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.4 Estimating the first term in the Commutator . . . . . . . . . . . . . . 84

4.4.5 Estimating the third order term in the commutant . . . . . . . . . . 95

4.4.6 Final estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Stationary Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.3 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

v



A.4 Local Smoothing on R from Propagation . . . . . . . . . . . . . . . . . . . . 107

A.5 Information on the Potentials Vp,n . . . . . . . . . . . . . . . . . . . . . . . . 113

A.5.1 Critical Points are Dense in [−ε, ε] . . . . . . . . . . . . . . . . . . . 113

A.5.2 Nature of the critical points . . . . . . . . . . . . . . . . . . . . . . . 114

A.5.3 Estimates of the Derivatives of the potential . . . . . . . . . . . . . . 114

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



LIST OF FIGURES

Figure 2.1 - Examples of Trapped Geodesics . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.2 - Graph of A1(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.3 - Level Sets of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.1 - Surface of Revolution with Degenerate Trapping . . . . . . . . . . . . 42

Figure 3.2 - Surface of revolution with inflection point trapping from [CM14] . . . 51

Figure 3.3 - The functions A2
1 and A2

2. . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.1 - Warping Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.2 - Comparing ψ, 1− ψ and ψ̃ . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure A.3 - Level sets of ξ2 + h2Vp,n(x) for p = 0 and n = 0 . . . . . . . . . . . . 115

Figure A.4 - Level sets of ξ2 + h2Vp,n(x) for p = n and n� p . . . . . . . . . . . . 115

vii



CHAPTER 1

INTRODUCTION

A solution u of the Schrödinger equation on Rn with initial condition u0 ∈ S (Rn) is a

solution to the equations 
(Dt −∆)u(t, x) = 0

u(0, x) = u0(x)

where Dt = 1
i
∂t and S is that set of Schwartz functions defined in Definition 2.3.1. The

Schrödinger equation describes the wave formulation of quantum particles. In the form above

u0(x) would be an initial probability that a given particle appears at x and ∆u(t, x) is the

kinetic energy of the particle at (t, x). The equation tells us that the evolution of u(t, x) is

related to the kinetic energy and is the quantum analog for Newton’s second law. In Rn, a

solution to the Schrödinger equation is given by

u(t, x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉e−itξ

2

∫
Rn
e−i〈y,ξ〉u0(y)dydξ

= eit∆u0(x).

This gives an exact solution for u0 ∈ S to the equation and allows us to model free particles.

However, there is often a potential energy term V (x). In this situation the Schrödinger

equation becomes 
(Dt −∆ + V )u(t, x) = 0

u(0, x) = u0(x).
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In many cases of Schrödinger equations with a potential there is no known explicit solution,

so estimates are used to understand how solutions behave. Instead of having a potential

term, another way the Schödinger equation might be altered is by changing the underlying

geometry. We might want to study particles on a Riemannian manifold M without boundary

with metric g. In this situation the Schrödinger equation becomes


(Dt −∆g)u(t, x) = 0

u(0, x) = u0(x)

where ∆g is the Laplacian on M with metric g. The change in the geometry is similar to

adding a potential term. In this thesis, we will be able to reduce studying the Schrödinger

equation on a 3-dimensional multi-warped product into studying the Schrödinger equation on

R with a potential term.

The Schrödinger equation is a type of dispersive equation, which are equations with

solutions that propagate based on the frequency of oscillation. Specifically in the Schrödinger

equation case, waves propagate proportionally to the frequency of oscillation. Another

common dispersive equation is the wave equation, which propagates in the direction of the

frequency of oscillation, but has constant speed of propagation. In contrast, the heat equation

and other parabolic and elliptic equations are not dispersive equations and do not propagate

based on the frequency of oscillation. A main feature of dispersive equations is that the way

waves propagate governs how solutions evolve over time. On a Riemannian manifold, the

waves for dispersive equations propagate in the direction of geodesics, so the nature of the

geodesics is important to determining the behavior of dispersive equations. On Rn, since

the geodesics are straight lines, we should expect solutions to the Schrödinger equation to

spread out over time and go off towards infinity. However, if there are trapped geodesics

that do not go off towards infinity, then we should expect the solution to spread out slower

over time. This difference in the behavior of geodesics affects the regularity of solutions to

the Schrödinger equation locally in space and averaged over time. For example, a dispersive
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equation with an initial condition concentrated near a trapped geodesic will disperse slowly

near this trapped geodesic and affect how quickly the solution will spread out towards infinity.

Since the Schrödinger equation conserves energy, we cannot have any global gain in regularity

in x however, we can analyze how regularity is affected locally in x over time. This type of

estimate is what we consider a local smoothing estimate. Specifically, if u is a solution to

the Schrödinger equation on Rn with initial condition u0 ∈ S (Rn), then the local smoothing

estimate is of the form

∫ T

0

n∑
i=1

||〈xi〉−1∂iu||2L2
x(Rn) ≤ CT ||u0||2H1/2(Rn).

where CT > 0 is a constant dependent on T and 〈xi〉−1 = (1 + x2
i )
−1/2. This type of estimate

shows that over time locally u(t, x) gains 1/2 derivatives. The term 〈xi〉−1 localizes in space,

because 〈xi〉−1 → 0 as |xi| → ∞. The term 〈xi〉−1 is not optimal, but agrees with what is

shown in Theorem 3.2.1.

We will briefly provide a heuristic estimate for the existence of local smoothing estimates for

dispersive equations on R. A formal proof can be found in Section A.4. Consider the differential

equation (Dt + Dm
x )u(t, x) = 0 for m ∈ N with initial condition u(0, x) = u0(x) ∈ S (R)

where Dt = 1
i
∂t and Dm

x = 1
im
∂mx . Then, a solution to the equation will have the form

u(t, x) =
1

2π

∫
R

∫
R
ei(x−y)ξe−itξ

m

u0(y)dydξ.

Combining exponentials we see that

u(t, x) =
1

2π

∫
R

∫
R
eiϕ(t,x,y,ξ)u0(y)dydξ

for the phase function

ϕ = (x− y)ξ − tξm.

Rapid decay of oscillatory integrals says that the solutions will be concentrated where

3



∂ξϕ = 0. A brief review of rapid decay of oscillatory integrals and stationary phase can

be found in Theorem A.2.1 and Theorem A.2.2 in the Appendix. More general results on

stationary phase can be found in [Zwo12]. Suppose that we have some initial condition

u0 such that û0(ξ) is concentrated near ξ0 > 0 and u0(x) is concentrated near y0 in some

interval I of length c. Since ∂ξϕ = (x− y)−mtξm−1, we have that ∂ξϕ(t, x, y0, ξ0) = 0 when

x = y0 +mtξm−1
0 . This implies that u(t, x) is concentrated near x = y0 +mtξm−1

0 . Hence u

propagates at speed mξm−1
0 . When mtξm−1

0 > c, u(t, x) will be concentrated away from the

interval I. This means when t > c
m
ξ
−(m−1)
0 , u(t, x) will be small on I. Then roughly we will

get, ∫ T

0

∫
I

|〈Dx〉(m−1)/2u|2dxdt =

∫ c
m
ξ
−(m−1)
0

0

∫
I

|〈Dx〉(m−1)/2u|2dxdt+ small.

Using Plancherel’s theorem,

∫ c
m
ξ
−(m−1)
0

0

∫
I

|〈Dx〉(m−1)/2u|2dxdt ≤
∫ c

m
ξ
−(m−1)
0

0

∫
R
|〈Dx〉(m−1)/2u|2dxdt

= C

∫ c
m
ξ
−(m−1)
0

0

∫
R
|〈ξ〉(m−1)/2û(t, ξ)|2dξdt.

Now, û(t, ξ) is concentrated near ξ0, so |ξ(m−1)/2û(t, x)| is roughly |ξ(m−1)/2
0 û(t, x)|. Thus,

∫ c
m
ξ
−(m−1)
0

0

∫
R
|〈ξ〉(m−1)/2û(t, ξ)|2dξdt ≤ C

∫ c
m
ξ
−(m−1)
0

0

∫
R
|ξ(m−1)/2

0 û(t, ξ)|2dξdt

≤ ξ
−(m−1)
0 ξ

(m−1)
0 C sup

t∈[0,T ]

{
∫
R
|û(t, ξ)|2dξ}

= C sup
t∈[0,T ]

{||u(t, ·)||2L2}.

Due to the conservation of mass of solutions to dispersive equation,

||u(t, ·)||2L2 = ||u0||2L2

4



for all t ∈ R. Combining the estimates gives

∫ T

0

∫
I

|〈Dx〉(m−1)/2u|2dxdt ≤ C||u0||2L2 .

This heuristic shows that we should expect a local smoothing effect in R. Specifically, in

the Schrödinger equation situation m = 2, we should expect a gain of a 1/2 derivative. The

m = 1 case is the half wave operator, which has no local smoothing effect, and the m = 3/2

case is the water wave equation with surface tension, which gains 1/4 derivatives.

1.1 Brief History of Local Smoothing

Local smoothing estimates for the Schrödinger equation have been studied in many

different contexts. Local smoothing was first observed by Kato [Kat83] for the KdV equation.

Local smoothing of the Schrödinger equation and more general dispersive equations were

later studied by Constantin-Saut [CS88], Sjölin [Sjö87], Vega [Veg88], Kato-Yajima [KY89],

and Jourńe-Soffer-Sogge [JSS91]. On Rn there exists a CT > 0 such that

∫ T

0

n∑
i=1

||〈xi〉−1∂iu||2L2
x(Rn)dt ≤ CT ||u0||2H1/2(Rn).

This result was extended to asymptotically Euclidean non-compact manifolds where the

geodesic flow is non-trapping in [Doi96], [CKS95]. Doi also showed there must be a loss in

regularity if there is trapping. These results show that a gain of 1/2 derivatives in the local

smoothing estimate is the maximum and any trapped geodesic implies that the gain must be

less than 1/2. Local-in-space smoothing estimates for the Schrödinger equation on smooth

manifolds with asymptotic flatness conditions were extended to global-in-time estimates

in [RT07] and [MMT08]. Work by Ralston [Ral71] implied that if the manifold has stable

trapping, then there can be no polynomial gain in derivatives. In contrast, work in [Bur04],

[Chr07], [Chr08], and [Dat09] showed that if the manifold has non-degenerate unstable

trapping, then there is a 1/2− ε gain in derivatives. There are many local smoothing results,
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however, we are going to focus on extending the estimates on manifolds with degenerate

unstable trapping in [CW13] and [CM14]. In [CW13], the authors considered a surface of

revolution M = R× S1 with metric

g = dx2
2 + A(x)2dθ2

where A(x)2 has a local minimum of order 2m, where m is an integer greater than 1. We say

that there is unstable degenerate trapping at the origin of order 2m. In this case, we gain

only 1/(m+ 1) instead of 1/2− ε derivatives. In [CM14], the authors extend the result from

[CW13] to the case of a surface of revolution where A(x)2 has a local minimum of order 2m1

at x = 0 and an inflection point of order 2m2 + 1 at x = 1, where m1 and m2 are integers

greater than 1. There is degenerate trapping of order 2m1 at x = 0 and we say that there is

inflection-transmission type trapping of order 2m2 + 1 at x = 1. They were able to show that

the gain in derivatives is the minimum of 1/(m1 + 1) and 2/(2m2 + 3).

In [CN22], the author with Christianson followed a similar argument to [CM14] to show

local smoothing results for the multi-warped product manifold X = R+× S1× S1 with metric

g(x, θ, ω) = dx2 + A1(x)2dθ2 + A2(x)2dω2

where there is inflection-transmission trapping at x = 1 in the θ direction and at x = 2 in the

ω direction. In this case, we saw that the trapping was isolated in each direction. If a geodesic

had non-zero initial velocity in both the θ and ω directions, then the geodesic was not trapped.

If there is inflection-transmission trapping of order 2m1 + 1 at x = 1 in the θ direction and

inflection-transmission type trapping of order 2m2 + 1 at x = 2 in the ω direction, then there

is a 1/2 gain in derivative away from the trapping. Overall we gain 2/(2m1 + 3) derivatives

in the θ direction and we gain 2/(2m2 + 3) derivatives in the ω direction. The trapping was

only at x = 1 and x = 2 allowing a positive commutator argument to isolate to the trapping.

In this thesis, we are going to prove local smoothing estimates for a multi-warped product
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with two infinite directions. In this situation the projection of all trapped trajectories onto

the x-direction after separating variables is a countable dense subset of points in the interval

[−ε, ε]. However, due to the extra dimension, we will show that we gain the same result from

[CW13] in each angular direction. Let M = R× S1 × S1 with metric

g(x, θ, ω) = dx2 + U+(x)2dθ2 + U−(x)2dω2

where U± are defined in Section 4. The main properties are that U−2
± have degenerate unstable

critical points of order 4 at ±ε respectively and that g(x, θ, ω) is Euclidean for |x| ≥ 4ε. The

main result of the thesis is the following,

Theorem 1.1.1. Let M be the multi-warped product with ∆M constructed in Section 4. Let

u be a solution to the Schrödinger equation on M with initial condition u0 ∈ S (M). For

each T > 0 there exists a constant C such that

∫ T

0

||〈x〉−3/2u||2H1(M)dt ≤ C||u0||2H2/3(M).

We begin by providing background on multi-warped products, the Schrödinger equation,

and pseudo-differential operators. We will define multi-warped products in Section 2.1 and

explain why they are a useful structure to study. Next, we will develop the necessary pseudo-

differential calculus in Section 2.3, which will include the two parameter calculus introduced in

[CW13]. Finally, we will explain the Schrödinger equation and why we study local smoothing

in Section 2.5.

We will then prove the result of local smoothing on R2 to show the positive commutator

technique, which will play a role in the results discussed later in Section 3.3. We will then go

over the result in [CW13] in Section 3.3. This will include a discussion of the proof strategy.

Afterwards, we will discuss the result from [CM14] in Section 3.4.1. We will discuss

the first results on multi-warped products in [CN22] and explain why this result is more

straightforward than the result in this thesis in Section 3.4.2. Finally, we will build up from

7



the previous results to prove our local smoothing result on a multi-warped product where the

projection of trapped trajectories onto the x-direction after separating variables is a countable

dense subset of an interval rather than isolated to just two points.

8



CHAPTER 2

BACKGROUND

2.1 Multi-Warped Products

One of the simplest examples of a warped product manifold is a surface of revolution,

which is given by revolving a curve. In this situation we have a manifold M = I × S1 with a

metric g = dx2 + f(x)gS1 for a function f(x) and interval I. At each point the metric on S1

is warped by a function dependent only on x. The other classic example of a warped product

manifold is Rn in polar coordinates. In polar coordinates Rn = R+ × Sn−1 together with the

metric

g = dx2 + x2gSn−1 .

In this case the x2 term is considered to be the warping function for the metric on Sn−1, even

if the end result is Euclidean space.

The advantage of warped product manifolds when the warped manifolds are compact is

that we can separate variables. This is what leads us to introduce multi-warped products.

Definition 2.1.1. Let M1,M2, . . .MN be compact Riemannian manifolds without boundary.

Denote the corresponding metrics gM1 , . . . , gMN
and suppose they have dimensions n1, . . . , nN .

Let I be an interval on R. Let A1, . . . , AN : I → R satisfying Aj(x) > 0 for all j = 1, · · · , N .

Let

X = I ×M1 ×M2 × · · · ×MN

with the metric

g = dx2 + A1(x)2gM1 + . . .+ AN(x)2gMN
.

9



Then X is called a multi-warped product manifold with cross sections M1, . . .MN .

Remark 2.1.2. We will call the x coordinate the radial direction. When M1, · · · ,Mn are

S1, we will call those the angular directions.

Definition 2.1.3 (Multi-Warped Product One Infinite Direction). Let M1,M2, . . .MN be com-

pact Riemannian manifolds without boundary. Denote the corresponding metrics gM1 , . . . , gMN

and suppose they have dimensions n1, . . . , nN respectively. Let A1, . . . , AN : R+ → R satisfying

Aj(x) > 0 for j = 1, · · · , N . Let

X = R+ ×M1 ×M2 × · · · ×MN

with the metric

g = dx2 + A1(x)2gM1 + . . .+ AN(x)2gMN
.

Then, X is called a multi-warped product manifold with one infinite direction. We will call X

Euclidean outside of a compact set and near zero if Aj(x) = x for x /∈ [a, b] for some positive

integers b > a > 0 for j = 1, · · · , N .

This is an extension of the polar coordinates situation in the sense that I = R+. This

type of manifold is used in [CN22]. We can also extend the situation where we have I = R,

so that the manifold has two infinite directions. The main result of this thesis is proving local

smoothing estimates on a multi-warped product with two infinite directions.

Definition 2.1.4 (Multi-Warped Product with Two Infinite Directions). Let M1,M2, . . .MN

be compact Riemannian manifolds without boundary. Denote the corresponding metrics

gM1 , . . . , gMN
and suppose they have dimensions n1, . . . , nN respectively. Let A1, . . . , AN :

R→ R satisfy Aj(x) > 0 for j = 1, · · · , N . Let

X = R×M1 ×M2 × · · · ×MN

10



with the metric

g = dx2 + A1(x)2gM1 + . . .+ AN(x)2gMN
.

Then, X is a multi-warped product manifold with two infinite directions. We will call X

Euclidean outside of a compact set if Aj(x) = |x| for |x| > C for some positive number C for

j = 1, · · · , N .

The multi-warped product in the thesis will be of the form M = R×S1×S1 with a metric

g = dx2 + A2
1(x)dθ2

1 + A2
2(x)dθ2

2

where A1(x), A2(x) > 0 and |A1|, |A2| = |x| when |x| > C for some constant C.

2.2 Geodesics and Trapping

Let M be a Riemannian manifold of dimension n with metric g and let γ : I →M be a

curve where γ(t) = (x1(t), x2(t), · · · , xn(t)) . Let gij denote the i, j-th entry of the dual of

the metric g. Then γ(t) is a geodesic if and only if

d2xk
dt2

+
n∑

i,j=1

Γkij
dxi
dt

dxj
dt

= 0, k = 1, · · · , n

where

Γmij =
1

2

∑
k

{
∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

}
gkm.

We will start by considering geodesics on a surface of revolution, since the geodesics can easily

be visualized. We will consider the manifold M = R× S1 with metric g = dx2 + A1(x)2dθ2
1

where A1(x) > 0. A trapped geodesic will be a geodesic of the form γ(t) = (x(t), θ1(t)) where

there is a C > 0 such that |x(t)| < C for all t.

Definition 2.2.1. A trapped geodesic γ(t) with initial conditions γ(0) = x and γ̇(0) = ξ is

stable if there exists an ε > 0 such that if |(x, ξ)− (x̃, ξ̃)| < ε then the geodesic γ̃ with initial
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conditions γ̃(0) = x̃ and ˙̃γ(0) = ξ̃ is trapped.

For M we will have

Γxθ1θ1 = −A1A
′
1, Γxij = 0 for all other i, j.

The geodesic equation that governs x(t) is given by

d2x(t)

dt2
− A1A

′
1

(
dθ1

dt

)2

= 0. (2.2.2)

Notice from this equation that all periodic geodesics such that ẋ(t) = 0 for all t are at critical

points of A1. In the case of [CW13] and [CM14] these periodic geodesics are the only trapped

geodesics, however trapping can be much more complicated. A few examples of trapped

geodesics are shown in Figure 2.1. We can have periodic geodesics without a fixed x value.

For example, on a sphere all great circles are periodic geodesics. This type of trapping is

shown as the stable trapping in Figure 2.1. Stable trapping does not have to be periodic.

The defining characteristic is that a small change in initial conditions for the geodesic will

still result in a trapped geodesic. It is also possible to have non-periodic unstable trapped

geodesics.

We covered the geodesic equations in terms of the metric, however geodesics can also

be defined in terms of the dual of the metric. Let M be a Riemannian manifold with

local coordinates x1, · · ·xn, metric gij and inverse metric gij. Note that we can view a point

ξ1dx1 + · · · + ξndxn in T ∗xM as (x, ξ) = (x1, · · · , xn, ξ1, · · · , ξn). Given (x, ξ) we define the

Hamiltonian H(x, ξ) =
∑n

a,b=1
1
2
gab(x)ξaξb. Then, the Hamiltonian flow is given by

ẋa =
∂H

∂ξa
=

n∑
b=1

gab(x)ξb

ξ̇a = −∂H
∂xa

= −
n∑

b,c=1

1

2

∂gbc

∂xa
ξbξc

12



Figure 2.1: Examples of Trapped Geodesics

where ẋa = d
dt
xa. In the case of the surface of revolution above, the Hamiltonian flow is given

by the following equations,

ẋ = ξx

θ̇1 = A−2
1 ξθ1

ξ̇x = −1

2
∂x(A

−2
1 )ξ2

θ1

ξ̇θ1 = 0.

Using ξx(t) = ẋ(t) and ξθ1(t) = A2
1θ̇1 gives

d2x

dt2
= A′1A1θ̇

2
1

13



which agrees with (2.2.2). The advantage of looking at geodesics in terms of Hamiltonian flow

is that flows are deterministic. Additionally, we know that the Hamiltonian is preserved by

the flow. This tells us that geodesics live on projections of level sets of the Hamiltonian. Note

that ξ̇θ1 = 0 for geodesics on a surface of revolution. We can take ξθ1 = 1, since if ξθ1 = 0,

then |ξx| > 0 which would give a non-trapped geodesic. Then, the Hamiltonian becomes

H(x, θ1, ξx, ξθ1) = ξ2
x + A−2

1 . Notice that the value of θ1 does not change the Hamiltonian, so

we can plot the Hamiltonian as level sets in the variables x and ξx.
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A1(x)

Figure 2.2: Graph of A1(x)

Consider A1 given in Figure 2.2, which has a local minimum at x = −2, a local maximum

at x = 0 and a local minimum at x = 2 such that A′′1(2) = A′′′1 (2) = 0. Note that the Hamilto-

nian is determined by A−2
1 . The point x = −2 will have non-degenerate unstable trapping, the

point x = 0 has stable trapping and the point x = −2 will have degenerate unstable trapping.

We can observe this behavior in the plot of the level sets of the Hamiltonian given in Figure 2.3.
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Figure 2.3: Level Sets of the Hamiltonian

Notice that at x = −2 if ξx 6= 0, then the trajectory will go to ±∞. Similarly, if we

start at a point near x = −2, but not equal to x = −2 the trajectory will go to ±∞ even

if ξx(0) = 0. This is an example of unstable trapping at x = −2. Notice that near x = 0

level sets are closed curves. This means near x = 0, every ray will be trapped. If (x, ξx) is

within a small neighborhood of (0, 0), then the trajectory with those initial conditions is still

trapped. This is an example of stable trapping at x = 0. Note that near x = 2 the level sets

are similar to those at x = −2. We have unstable behavior. However, the stable and unstable

manifolds approach the point x = 2, ξx = 0 tangential to each other. This is a way to see

degenerate trapping. The issue with this is that it precludes any sort of normal form and

that the trajectories near the degenerate point will move towards infinity at a slower rate.

Remark 2.2.3. We discussed the trapping in terms of x, since the value of θ1 does not
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change the Hamiltonian. However, if a geodesics γ(t) = (x(t), θ1(t)) is trapped with initial

condition x(0) = x0, θ1(0) = θ0, ẋ(0) = ξx, θ̇1(0) = ξθ1, then the geodesic γ̃(t) = (x̃(t), θ̃1(t))

with initial condition x(0) = x0, θ1(0) = θ̃0, ẋ(0) = ξx, θ̇1(0) = ξθ1 is trapped for any θ̃0 ∈ S1.

Now we will consider the multi-warped product case. Let M = R+×S1×S1 with a metric

g = dx2 + A2
1(x)dθ2

1 + A2
2(x)dθ2

2

where A1(x), A2(x) > 0, A1(x) has a critical point at x = 1, A2(x) has a critical point at

x = 2 and ∂x(A
−2
1 ), ∂x(A

−2
2 ) ≤ 0. In this situation

Γxθ1θ1 = −A1A
′
1, Γxθ2θ2 = −A2A

′
2, Γxij = 0 for all other i, j.

Let γ(t) = (x(t), θ1(t), θ2(t)) be a geodesic on M . Then,

d2x(t)

dt2
− A1A

′
1

(
dθ1

dt

)2

− A2A
′
2

(
dθ2

dt

)2

= 0.

In terms of the Hamiltonian flow

ẋ = ξx

θ̇1 = A−2
1 ξθ1

θ̇2 = A−2
2 ξθ2

ξ̇x = −1

2
(∂x(A

−2
1 )ξ2

θ1
+ ∂x(A

−2
2 )ξ2

θ2
)

ξ̇θ1 = 0

ξ̇θ2 = 0.

Notice that ξ̇x ≥ 0. If the Hamiltonian flow has initial condition ξx(0) > 0, then the

trajectory is not trapped as t → ∞. Furthermore, if ξx(0) < 0, then the trajectory is not

trapped as t → −∞. This implies the only possible trapped trajectories must have initial
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condition ξx(0) = 0. If both ξθ1 , ξθ2 > 0, we know ξ̇x(0) > 0, since the critical points for A−2
1

and A−2
2 are at different x-values. Hence, any trajectory with initial condition ξθ1(0), ξθ2(0) > 0

will not be trapped. Assume that ξθ2(0) = 0. Then, ξ̇x(0) > 0 as long as x 6= 1. This implies

that the only trapped trajectories with initial conditions ξθ1(0) 6= 0, ξθ2(0) = 0, ξx(0) = 0 have

the initial condition x(0) = 1. Similarly, the only trapped trajectories with initial conditions

ξθ1(0) = 0, ξθ2(0) 6= 0, ξx(0) = 0 will have the initial condition x(0) = 2. This analysis shows

that the trapping only occurs at x = 1 and x = 2 and it is isolated to the θ1-direction at

x = 1 and the θ2-direction at x = 2. This is the trapping in [CN22].

Now let M = R× S1 × S1 with a metric

g = dx2 + A2
1(x)dθ2

1 + A2
2(x)dθ2

2

where A1(x), A2(x) > 0, A1(x) has a critical point at x = −1, and A2(x) has a critical

point at x = 1. Assume ∂x(A
−2
1 ) > 0 for x < −1 and ∂x(A

−2
1 ) < 0 for x > −1. Assume

∂x(A
−2
1 ) > 0 for x < 1 and ∂x(A

−2
1 ) < 0 for x > 1. Notice that for x ∈ (−1, 1) we have

that sign(A′1(x)) 6= sign(A′2(x)) and that for x /∈ [−1, 1] we have sign(A′1(x)) = sign(A′2(x)).

Suppose ξx(0) = 0 and x(0) ∈ (−1, 1) for initial conditions of for the Hamiltonian flow. Since

sign(A′1(x)) 6= sign(A′2(x)), we have that there exists initial conditions for ξθ1 and ξθ2 such

that ξ̇x(0) = 0. Hence, there will be trapped trajectories for the initial conditions ξx(0) = 0

and x(0) ∈ (−1, 1). This situation is what makes the trapping in this thesis different than

the case in [CN22]. Instead of being isolated to two points in x, the trapping is on a range of

x values. Additionally, a trapped trajectory can have non-zero velocities in both the θ1 and

θ2 directions, unlike the manifold in [CN22].
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2.3 Pseudo-differential Operators

2.3.1 Classical Pseudo-differential Operators

We will be interested in pseudo-differential operators which are a class of integral operators.

The main class of functions we will apply pseudo-differential operators to are Schwartz

functions.

Definition 2.3.1. Let

S (Rn) =

{
f ∈ C∞(Rn)

∣∣∣∣∀α, β ∈ Nn, sup
x∈Rn
|xαDβ

xf(x)| <∞
}

denote the space of Schwartz functions on Rn.

This class of functions is nice to work with because the integral operators we are interested

in are defined from S to S and S functions are dense in L2 functions.

For a multi-index α = (α1, α2, · · · , αn)

Dα
xu(x) =

1

i|α|
Dα1
x1
Dα2
x2
· · ·Dαn

xnu(x1, x2, · · · , xn)

where |α| = α1 + α2 + · · ·+ αn. Note that

Dα
xu(x) =

1

(2π)n

∫
Rn
ei〈x,ξ〉ξαû(ξ)dξ

for any multi-index α. In general, given a differential operator L =
∑
|α|≤k lα(x)Dα

x , define

a(x, ξ) =
∑
|α|≤k lα(x)ξα. Then,

Lu(x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉a(x, ξ)û(ξ)dξ.

We call a(x, ξ) the symbol of the operator L. We want to allow a wider class of functions for

a(x, ξ) than just polynomials in ξ; however, we would like the functions to behave similarly
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to polynomials as |ξ| → ∞. This is the idea behind the definition of symbol classes.

Definition 2.3.2. Let m be a real number. The symbol class of order m on Rn is the set

Sm(Rn) = {a(x, ξ) ∈ C∞(Rn × Rn)| |∂αx∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β| for all multindices α, β}

where 〈ξ〉s = (1 + ξ2)s/2.

Definition 2.3.3. For a ∈ C∞(R2n), a = OSm(1) if

|∂αx∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β| for all multindices α, β.

Theorem 2.3.4 (Theorem 18.1.6 in [Hör07]). If a ∈ Sm and u ∈ S , then

a(x,D)u(x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉a(x, ξ)û(ξ)dξ

defines a function a(x,D)u ∈ S , and the bilinear map (a, u) 7→ a(x,D)u is continuous. One

calls a(x,D) or Op 1(a) a pseudo-differential operator of order m. We will call a(x,D) the

standard quantization of a(x, ξ).

Theorem 2.3.5 (Theorem 18.1.8 in [Hör07]). If aj ∈ Smj , j = 1, 2, then as operators on S

a1(x,D)a2(x,D) = b(x,D)

where b ∈ Sm1+m2 is given by

b(x, ξ) = ei〈Dy ,Dη〉a1(x, η)a2(y, ξ)|η=ξ,y=x. (2.3.6)
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If we calculate out terms in (2.3.6) we get

b(x, ξ) = ei〈Dy ,Dη〉a1(x, η)a2(y, ξ)|η=ξ,y=x

= a1(x, ξ)a2(x, ξ) +
1

2
Dxa1(x, ξ)Dξa2(x, ξ) +OSm1+m2−2(1).

Since a1(x, ξ)a2(x, ξ) = a2(x, ξ)a1(x, ξ), we get the following corollary,

Corollary 2.3.7. If aj ∈ Smj , j = 1, 2, then as operators on S we have [a1(x,D), a2(x,D)] =

b(x,D) where b ∈ Sm1+m2−1.

If a1 or a2 is a polynomial in x and ξ, there are only a finite number of terms in the

expansion for b(x, ξ).

Theorem 2.3.8 (Theorem 18.1.9 in [Hör07]). If a ∈ S0, then a(x,D) is bounded in L2(Rn).

Corollary 2.3.9. If a ∈ Sm, then a(x,D) is a continuous operator from Hs to Hs−m.

Proof. Suppose u ∈ Hs(Rn). ||u||Hs = ||Λsu||L2 where Λsu(x) = 〈Dx〉su(x). Then,

||a(x,D)u||Hs−m = ||Λs−ma(x,D)u||L2 = ||Λs−mΛmΛ−ma(x,D)u||L2 = ||ΛsΛ−ma(x,D)u||L2 .

From Theorem 2.3.5, Λ−ma(x,D) = a1(x,D) for a symbol a1 ∈ S0. Using Theorem 2.3.8

gives

||Λs(a1(x,D)u)||L2 ≤ C||Λsu||L2 = C||u||Hs

for a constant C > 0.

Lemma 2.3.10. Let a(x, ξ) ∈ Ss(Rn) be a symbol only dependent on ξ. Let f, g ∈ Hs. Then,

〈a(x,D)f, g〉 = 〈f, ā(x,D)g〉.

This is a corollary of Proposition 2.3.20
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2.3.2 h-calculus

We will begin by developing the classical h-calculus and Weyl quantization as done in

[Zwo12] and then explain why there is a need for the two-parameter calculus. Note that we

will require 0 < h ≤ 1. We will use the following symbol class for the h-calculus,

Sδ(Rn) :=
{
a ∈ C∞(R2n)

∣∣ |∂αa| ≤ Cαh
−δ|α| for all multi-indices α

}
. (2.3.11)

Definition 2.3.12. For a ∈ C∞(R2n), a = OSδ(h
N) if |∂αa| ≤ Cα,Nh

N−δ|α| for all multi-

indices α.

Let x̃ := h−1/2x, ξ̃ := h−1/2ξ and ah(x̃, ξ̃) := a(x, ξ). If a ∈ Sδ, then

|∂αah| = h|α|/2|∂αa| ≤ Cαh
|α|( 1

2
−δ).

Under this scaling we see that if δ = 1
2
, there is no decay as h → 0. There are two issues

we want to work around here. We will want to look at the critical case to minimize gain in

orders of h as we take derivatives. Additionally, we will want to make this more general, so

that there is different decay depending on derivatives in x or ξ. To handle the difference in

decay depending on derivatives in x or ξ we will use the scaling x̃ := h−βx, ξ̃ := h−γξ, where

β + γ = 1. This will give a similar, but more general critical case where there is no decay as

h→ 0. We will then introduce a second parameter, so that we can handle these critical cases.

Now that we defined symbol classes, we can introduce the Weyl quantization and semi-

classical standard quantization of a symbol.

Definition 2.3.13 (Quantization). The Weyl quantization of the symbol a ∈ Sδ is the

operator denoted aw(x, hD) or Op w
h (a) acting on a function u ∈ S (Rn) by the formula

aw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a

(x+ y

2
, ξ
)
u(y)dydξ. (2.3.14)
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The semi-classical standard quantization is the operator denoted by a(x, hD) or Op 1
h(a) by

the formula

aw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a

(
x, ξ
)
u(y)dydξ. (2.3.15)

More generally for 0 ≤ t ≤ 1 we define the operator Op t
h(a) by

aw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉a

(
tx+ (1− t)y, ξ

)
u(y)dydξ. (2.3.16)

Note that Op 1
h(a) = Op 1(a) for h = 1.

Theorem 2.3.17 (Theorem 4.13 from [Zwo12]). If A = Opth(at) for 0 ≤ t ≤ 1, then

at(x, ξ) = ei(t−s)h〈Dx,Dξ〉as(x, ξ).

This gives us a formula to change quantizations. From the change of quantization formula,

we should expect that the Weyl quantization has many of the same properties as the standard

quantization.

Theorem 2.3.18 (Theorem 4.16 from [Zwo12]). If a ∈ Sδ, then

aw(x, hD) : S → S

and

aw(x, hD) : S ′ → S ′

are continuous linear transformations.

Theorem 2.3.19 (Theorem 4.23 [Zwo12]). Let a ∈ S, then

aw : L2(Rn)→ L2(Rn)

is bounded.
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We have the following generalization of Lemma 2.3.10.

Proposition 2.3.20. Let a ∈ S. Then,

Op ∗t (a) = Op 1−t(ā)

for (0 ≤ t ≤ 1) and in particular if a is real then

aw(x, hD)∗ = aw(x, hD).

Proof. Let f, g ∈ L2. Then,

〈Op t(a)f, g〉 =

∫
Rn

Op t(a)f(x)ḡ(x)dx

=

∫
Rn

1

(2π)n

∫
Rn

∫
Rn
ei〈x,ξ〉a(tx+ (1− t)z, ξ)e−i〈z,ξ〉f(z)dzdξḡ(x)dx

=

∫
Rn
f(z)

1

(2π)n

∫
Rn

∫
Rn
ei〈x,ξ〉a(tx+ (1− t)z, ξ)e−i〈z,ξ〉ḡ(x)dxdξdz

=

∫
Rn
f(z)

1

(2π)n

∫
Rn

∫
Rn
ei〈z,ξ〉ā(tx+ (1− t)z, ξ)e−i〈x,ξ〉g(x)dxdξdz

=

∫
Rn
f(z)Op 1−t(ā)g(z)dz

= 〈f,Op 1−t(ā)(x,D)g〉.

Now, that we know aw(x, hD) is a well-defined operator, we would like to know what

happens when we take the composition of two quantizations.

Theorem 2.3.21 (Theorem 4.18 from [Zwo12]). Suppose a ∈ Sδ and b ∈ Sδ. Let

a#b(x, ξ) := eihA(D)(a(x, ξ)b(x, ξ))|y=x,η=ξ.
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A(D) := 1
2
σ(Dx, Dξ, Dy, Dη). Then, a#b ∈ Sδ and

aw(x, hD)bw(x, hD) = (a#b)w(x, hD)

as operators mapping S to S . Furthermore,

a#b = ab+
h

2i
{a, b}(x, ξ) +OSδ(h2−2δ)

and

[aw(x, hD), bw(x, hD)] =
h

i
{a, b}w(x, hD) +OSδ(h3(1−2δ)). (2.3.22)

Remark 2.3.23. There are a few reasons why the Weyl quantization is useful. One reason is

that the Weyl quantization is essentially self-adjoint with respect to the L2 inner product if the

symbol is real. This is not the case for standard quantization. Additionally, in the commutator

(2.3.22) the terms with even order of derivatives cancel out leaving only the odd terms. This

is why we get OSδ(h3(1−2δ)) in (2.3.22) instead of OSδ(h2(1−2δ)) for the semi-classical standard

quantization.

We will need a similar result to this to prove the main results of this thesis. The issue is

that we are dealing with a critical case, which means that the OSδ(h3(1−δ)) term turns out to

be OSδ(h0). Since, there is no gain in h we cannot easily absorb the terms in the expansion

into the Poisson bracket term. This is why we introduce a second small parameter that is

gained, so that we can absorb the additional terms in the critical case.

2.3.3 Two parameter calculus

In this section we will introduce the two parameter calculus used to handle the marginal

h-calculus situations. This two parameter calculus was first introduced by Sjöstrand and

Zworski in [SZ07] for the case of α = β = 1/2. Then, the two parameter calculus was expanded

to allow for α, β > 0 such that α + β = 1 in [CW13].
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To start we need to define a new symbol class. For α ∈ [0, 1] and β ≤ 1− α, let

Sk,m,m̃α,β (Rn)

:=

{
a ∈ C∞(Rn × Rn × (0, 1]2)

∣∣ |∂ρx∂γξ a(x, ξ;h, h̃)| ≤ Cργh
−mh̃−m̃

( h̃
h

)α|ρ|+β|γ|
〈ξ〉k−|γ|

}
.

Throughout this paper we will assume that h̃ ≥ h. Notice that if α, β = 1/2, then we are

in the critical case, where there is no gain in h when computing the terms of the composition

of two quantizations. However, we see that there are gains in h̃, which will allow us to handle

the additional terms beyond the Poisson bracket teerm in the expansion for the commutator

of two pseudo-differential operators. In this thesis we will specifically consider the case where

β = 2
3

and α = 1
3
.

If a ∈ Sk,m,m̃α,β and b ∈ Sk,m
′,m̃′

α,β , then

Op w
h (a) ◦Op w

h (b) = Op w
h (c) with c ∈ Sk+k′,m+m′,m̃+m̃′

α,β .

Additionally, we have the following lemma from [CW13],

Lemma 2.3.24 (Lemma 2.4 from [CW13]). Suppose that a, b ∈ S0,0,0
α,β and that cw = aw ◦ bw.

Then

c(x, ξ) =
N∑
k=0

1

k!

(ih
2
A(D)

)k
a(x, ξ)b(y, η)|x=y,ξ=η + eN(x, ξ)

where for some M

|∂γeN | ≤ CNh
N+1

∑
γ1+γ2=γ

sup
(x,ξ)∈T ∗Rn,(y,η)∈T ∗Rn

sup
|ρ|≤M,ρ∈N4n

∣∣Γα,β,ρ,γ(D)(A(D))N+1a(x, ξ)b(y, η)
∣∣

where

Γα,β,ρ,γ(D) = (hα∂(x,y), h
β∂(ξ,η))

ρ∂γ1(x,ξ)∂
γ2
(y,η).

Notice that if a ∈ S0,0,0
α,β (Rn) and b ∈ S(Rn) then,
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c(x, ξ) =
N∑
k=0

1

k!

(ih
2
A(D)

)k
a(x, ξ)b(y, η)|x=y,ξ=η

+OS0,0,0α,β
(hN+1 max{(h̃/h)(N+1)α, (h̃/h)(N+1)β}). (2.3.25)

This gain in h̃ terms allows us to absorb the high order terms that we could not absorb in

the past due to the lack of gain of powers of h.

2.4 Functional Calculus

We will review functional calculus, so that we can define the fractional Laplacian, the

Schrödinger propagator and Sobolev spaces on a manifold Hs(M) for non-integer s. We will

follow the results presented in [RS81] and [LPG+19].

Theorem 2.4.1 (Theorem VIII.5 in [RS81]). Let A be a self-adjoint operator on a Hilbert

space H. Then, there is a unique map ϕ̂ from bounded borel functions on R to linear operators

on H, L (H) so that

a) ϕ̂ is an algebraic ∗-homomorphism

b) ϕ̂ is norm continuous, that is ||ϕ̂(h)||L (H) ≤ ||h||∞

c) If Aψ = λψ, then ϕ̂(f)ψ = f(λ)ψ.

This theorem allows use to define eit∆ used in 4.4.2 since f(x) = eitx is a bounded Borel

function on R. The functional calculus form is useful, however f(x) = xs for 0 < s < 1 is not

a bounded function. Theorem 2.4.1 does not allow us to construct the fractional Laplacian in

this form. We will have to use another form of the spectral theorem.

To start we will define projection-valued measures.

Definition 2.4.2. Let PΩ be the operator χΩ(A) where χΩ is the characteristic function on

the measurable set Ω ⊂ R. Suppose the family of operators {PΩ} has the following properties:
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a) Each PΩ is an orthogonal projection

b) P∅ = 0, P(−∞,∞) = I

c) If Ω = ∪Nn=1Ωn with Ωn ∩ Ωm = ∅ if n 6= m, then PΩ = s− limN→∞
∑N

n=1 Pωn

d) PΩ1PΩ2 = PΩ1∩Ω2

Then, the family is called a projection-valued measure.

Fix A, an unbounded self-adjoint operator on a Hilbert space H. Let PΩ be the operator

χΩ(A). From Theorem 2.4.1 we know this is a well-defined operator. Let ψ ∈ H, then

〈ψ, PΩψ〉 is a well-defined Borel measure on R which we denote by d(ψ, Pλψ). In particular

{PΩ} is a projection-valued measure.

Given a bounded Borel function g we can define g(A) by

〈ψ, g(A)ψ〉 =

∫ ∞
−∞

g(λ)d(ψ, Pλψ).

Theorem 2.4.3 (Theorem VIII.6 in [RS81]). There is a one-to-one correspondence between

self-adjoint operators A and projection-valued measures {PΩ} on H, the correspondence being

given by

A =

∫ ∞
−∞

λd(ψ, Pλψ)

This construction is more general than the functional calculus form. It allows us to define

Aα for 0 < α < 1 for a positive operator A.

Definition 2.4.4.

Aα =

∫ ∞
−∞

λαd(ψ, Pλψ)

Taking A = −∆g we can define non-integer powers of the Laplacian operator on a manifold.

Specifically,

Definition 2.4.5.

(−∆)α =

∫ ∞
−∞

λαd(ψ, Pλψ)
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We take −∆g instead of ∆g, because −∆g is a positive operator and the spectrum of −∆g

is contained in the positive real line. Thus,

(−∆)α =

∫ ∞
0

λαd(ψ, Pλψ)

As an example we will consider the case of A = −∆ on Rn. Note that the spectrum of −∆,

denoted by σ(−∆), consists of |ξ|2, where ξ ∈ R with corresponding eigenfuctions e−iξ·x.

Recall we use −∆, so that the spectrum is positive. Thus the projection valued measure is

given by

d(ψ, Pξψ) =
1

(2π)d
〈ψ, eiξ,x〉eiξ·xdξ.

So,

(−∆)α/2u(x) =
1

(2π)n

∫
Rd
|ξ|α〈u, eiξ,x〉eiξ·xdξ = F−1(|ξ|αF (u))(x).

This shows how in Rn, (−∆)s/2u = Op 1(|ξ|s)u. In general, if we have positive self-adjoint

operators A and B such that As = Bs, then we know that A = B.

Now to define the norm for Hs(M) we will take

||u||Hs(M) = ||(C −∆)s/2u||L2(M)

for a constant C > 0 sufficiently large. Note that

||(C −∆)s/2u||L2(M) ≥ Cs/2||u||L2 + ||(−∆)s/2u||L2(M)

so that this provides an equilvalent metric to the Hs(M) norm defined through pseudo-

differential calculus. In fact, on Rn

(1−∆)s/2u = 〈Dx〉su.
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2.5 Schrödinger Equation

Let M be a Riemannian manifold without boundary with metric g and Laplace-Beltrami

operator ∆g. The Schrödinger equation on M is


(Dt −∆g)u = 0

u|t=0 = u0

where Dt = 1
i
∂t.

The Schrödinger equation has the property that the Hs(Rn) norm is preserved. This

implies that if the initial condition u0 ∈ Hs(Rn) for some s > 0, but u0 6∈ Hs+δ(Rn) for

some small δ > 0, then u(t, ·) ∈ Hs(Rn) and u(t, ·) 6∈ Hs+δ(Rn) for fixed t. This implies u

does not become more well behaved globally in x over time. Additionally, it is possible for u

to concentrate locally in x at a single point in time. For example, an estimate of the form

||eit∆u0||2
H

1/2
loc

≤ C||u0||2L2 is not possible for all t > 0 if u0 /∈ H1/2. Both of these issues are

why the best we can hope for is local smoothing averaged over time. We will end this section

by showing conservation of the Hs norm for Schrödinger equation before we move onto local

smoothing results in the later sections.

Lemma 2.5.1. Let u0 ∈ Hs(Rn). Suppose u is the solution to


(Dt −∆)u = 0

u|t=0 = u0.

Then

||u(t,−)||Hs(Rn) = ||u0||Hs(Rn)

for all t ≥ 0.

Proof. We will prove this for u0 ∈ S . Since Schwartz functions are dense in Hs, we get the

results for all functions u0 ∈ Hs. Additionally, if u0 ∈ S , then û0 ∈ S .
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Suppose u0 ∈ S . If we take the Fourier transform in x of the Schrödinger Equation we

get 
(Dt + |ξ|2)û = 0

û|t=0 = û0.

This has the solution û = e−i|ξ|
2tû0. Now, taking the inverse Fourier transform gives that

u(t, x) = eit∆u0(x) = F−1(e−i|ξ|
2tû0)

is the solution to the Schrödinger equation. The operator eit∆ is called the Schrödinger

propagator.

Now recall that

||u||Hs = ||Λsu||L2

where

Λsu = F−1(〈ξ〉sû).

Using that u(t, x) = eit∆u0(x) and that |e−it|ξ|2| = 1 gives

||u||Hs = ||Λseit∆u0||L2

=
1

(2π)n
||〈ξ〉seit|ξ|2û0||L2

=
1

(2π)n
||〈ξ〉sû0||L2

= ||Λsu0||L2

= ||u0||Hs .

We will now consider the Schrödinger equation with a potential term V (x) where V ∈

C∞(Rn) and V and all of its derivatives are bounded. The addition of the V (x) term here
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does not allow us to use the same proof as in the case of Rn without a potential term. Let u

be a solution to 
(Dt −∆ + V )u = 0

u(0, x) = u0(x)

(2.5.2)

and u0 ∈ S (Rn). Let E(t) = ||u(t, ·)||2L2(Rn). Then,

E ′(t) = 2 Re i

∫
Rn

(Dtu)ūdx

= 2 Re i

∫
Rn

(∆− V )uūdx

= 2 Re i

∫
Rn

(∆u)ūdx− 2 Re i

∫
Rn

(−V u)ūdx

= 2 Re i

∫
Rn

(∆u)ūdx, since −V uū is real

= −2 Re i

∫
Rn
|∇u|2dx

= 0, since |∇u|2 is real.

Hence, E(t) = E(0) for all t.
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Let E1(t) = ||∇u(t, ·)||2L2(Rn). Then,

E ′1(t) = 2 Re i

∫
Rn

(Dt∇u) · ∇ūdx

= 2 Re i

∫
Rn
∇((∆− V )u) · ∇ūdx

= 2 Re i

∫
Rn
∇(∆u) · ∇ūdx− 2 Re i

∫
Rn
∇(−V u) · ∇ūdx

= 2 Re i

∫
Rn
−|∆u|2dx− 2 Re i

∫
Rn
∇(−V u) · ∇ūdx

= 2 Re i

∫
Rn
u∇(−V ) · ∇ūdx− 2 Re i

∫
Rn
−V∇u · ∇ūdx

= 2 Re i

∫
Rn
u∇(−V ) · ∇ūdx

≤ C

∫
Rn
|u∇(−V )|2 + |∇u|2dx

≤ C

∫
Rn
|u|2dx+

∫
Rn
|∇u|2dx

≤ C||u0||2L2 + CE1(t).

This implies that

E ′1(t)− CE1(t) ≤ C||u0||2L2

(E1(t)e−Ct)′ect ≤ C||u0||2L2

(E1(t)e−Ct)′ ≤ e−ctC||u0||2L2

E1(T )e−CT − E1(0) ≤
∫ T

0

e−ctC||u0||2L2dt

E1(T ) ≤ eCT
(
E1(0) + C||u0||2L2

∫ T

0

e−ctdt

)
E1(T ) ≤ CT (E1(0) + ||u0||2L2). (2.5.3)

This implies that for all T > 0 there exists a constant CT > 0 such that

||u(t, ·)||2H1(Rn) ≤ CT ||u0||2H1(Rn).
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In this situation we see that the H1 norm of u is bounded by the H1 norm of u0, but it is

not exactly conserved.

We will now consider the Schrödinger equation on a manifold M with metric g. Let u be

a solution to 
(Dt −∆g)u = 0

u(0, x) = u0(x)

(2.5.4)

and u0 ∈ S (M). Note that (−Dt −∆g)ū = 0. Let E(t) = ||u(t, ·)||2L2(M). Then,

E ′(t) = 2 Re i

∫
M

(Dtu)ūdM

= 2 Re i

∫
M

(∆u)ūdM

= −2 Re i

∫
M

(∇gu) · ∇gūdx

= −2 Re i

∫
M

|∇gu|2dx

= 0, since |∇gu|2 is real.

Hence E(t) = E(0) for all t > 0. Therefore, for all t > 0, we have ||u(t, ·)||2L2(M) = ||u0||2L2(M).

Let E1(t) = ||∇gu(t, ·)||2L2(M). We use ∇g to define E1 because it commutes with ∆g,

however E + E1 is an equivalent norm to

||u(t, ·)||2H1(M) = ||(1 + ∂x + ∂θ+ + ∂θ−)u||2L2(M).
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E ′1(t) =

∫
M

(∇g∂tu) · ∇gūdM +

∫
M

(∇gu) · ∇g∂tūdM

= −
∫
M

(∂tu)∆gūdM −
∫
M

(∆gu)∂tūdM

= −
∫
M

∂tuDtūdM +

∫
M

Dtu∂tūdM

= −1

i

(∫
M

∂tu∂tūdM −
∫
M

∂tu∂tūdM

)
= 0

Therefore E1(t) = E1(0) for all t > 0. Hence, for all t > 0 we have ||u(t, ·)||2H1(M) ≤ ||u0||2H1(M).

We see that on a manifold the L2 and H1 norms are conserved by using the properties of the

Laplacian. In order to use the properties of the Laplacian for the Hs norm we will define the

norms in terms of powers of the Laplacian. In general, let ||u||Ḣs = ||(C −∆g)
s/2u||L2 , where

(C −∆g)
s/2 is defined by the functional calculus presented in Section 2.4 for 0 < s < 1. This

norm is equivalent to any norm defining Sobolev spaces through pseudo-differential calculus.

Note that

(C −∆g)
s/2(∆gu) = ∆g((C −∆g)

s/2u).

Let Es(t) = ||u||2
Ḣs . Then,

E ′s(t) =

∫
M

((C −∆g)
s
2∂tu)(∆g)

s
2 ūdM +

∫
M

((C −∆g)
s
2u)(∆g)

s
2∂tūdM

=

∫
M

((C −∆g)
s
2 (∆gu))(C −∆g)

s
2 ūdM −

∫
M

((C −∆g)
s
2u)(C −∆g)

s
2 (∆gū)dM

=

∫
M

∆g((C −∆g)
s
2u)(C −∆g)

s
2 ūdM −

∫
M

(C −∆g)
s
2u(∆g(C −∆g)

s
2 ū)dM

= −
∫
M

(∇g(C−∆g)
s
2u)·(∇g(C−∆g)

s
2 ū)dM+

∫
M

(∇g(C−∆g)
s
2u)·(∇g(C−∆g)

s
2 ū)dM

= 0.

Hence Es(t) = Es(0) for all t.
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CHAPTER 3

HISTORY OF LOCAL SMOOTHING RESULTS

3.1 General Local Smoothing Estimates

As stated in the introduction, local smoothing estimates have been studied by many over

the years. The results by Doi [Doi96] and Craig-Kappeler-Strauss [CKS95] show that if a

manifold is asymptotically Euclidean we gain 1/2 derivatives locally in x averaged over time

if and only if there are no trapped geodesic. Results by Marzoula-Metcalfe-Tataru [MMT08]

and Ralston-Tau [RT07] extended these results to global in time local smoothing estimates

on classes of asymptotically Euclidean manifolds. There have many been results to show how

different kinds of trapping on asymptotically Euclidean manifolds affect the local smoothing

estimates. In the following table we will summarize some of the results for local smoothing

for asymptotically Euclidean manifolds.

Trapping Type Smoothing Estimates References

None 1/2 gain [Doi96],[CKS95],[RT07],[MMT08]
Non-degenerate unstable 1/2− ε gain [Dat09], [Bur04], [Chr08]

Stable No Polynomial Gain [Ral71]
Infinite Degenerate Unstable No Polynomial Gain [Chr18]
Finite Degenerate Unstable Polynomial Gain [CW13], [CM14], [CN22]

From this we see that there is a range of a gain of 1/2 derivative with no trapping to a

complete loss of polynomial gain in the degenerate unstable and stable cases. We will focus

on the case in Rn, which has no trapping, and the finite degenerate unstable cases where the

polynomial gain depends on the nature of the unstable trapping.
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3.2 Local Smoothing in R2

We have discussed how on Rn the local smoothing estimate is a gain of 1/2 derivative.

We will prove this for R2. In the R2 case,

Theorem 3.2.1. Suppose u solves


(Dt −∆R2)u = 0

u|t=0 = u0

where u0 ∈ H1/2(R2). Then for every T > 0 there is a CT > 0 such that

∫ T

0

||〈x〉−1∂xu||2 + ||〈y〉−1∂yu||2dt ≤ CT ||u0||2H1/2 .

The important parts of the theorem is that the 〈x〉−1 and 〈y〉−1 terms localize in space

and that the results implies a gain of 1/2 derivative locally averaged over time. (The −1

power is not optimal. Our focus in this thesis is the gain in derivatives, not the optimal

localizing term.) We will go through the proof of the theorem because it illustrates one of the

common techniques, a positive commutator argument, used to help prove local smoothing

results in more complicated situations

Proof. Note that

[−∆, x∂x + y∂y] = −2∆.

We want to mimic this idea with a vector field B = a(x)∂x + a(y)∂y, so that a(z) ≈ z near

0 and is bounded as |z| → ∞. Let B = a(x)∂x + a(y)∂y, where a(z) = arctan(z). Note that

a′(z) is non-negative, a(z) and all derivatives of a(z) are bounded, a(z) ≈ z near 0, and

a′(z) = 〈z〉−2.

Remark 3.2.2. We could choose a(z) = z〈z〉−1 or any function such that a′(z) is non-

negative, a(z) and all derivatives of a(z) are bounded, a(z) ≈ z near z = 0. We chose
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arctan(z) here because it provides a better localizing term than z〈z〉−1 and is already defined.

In the proof of the main theorem we will define a function so that a(z) ≡ z near z = 0 to

make the calculations simpler.

Now,

[B,−∆] =[a(x)∂x + a(y)∂y,−∂2
x − ∂2

y ]

= [a(x)∂x,−∂2
x] + [a(y)∂y,−∂2

y ] + [a(x)∂x,−∂2
y ] + [a(y)∂y,−∂2

x]

= (a′′(x)∂x + 2a′(x)∂2
x) + (a′′(y)∂y + 2a′(y)∂2

y). (3.2.3)

Since u solves the Schrödinger equation,

0 =

∫ T

0

〈B(Dt −∆)u, u〉dt

=

∫ T

0

〈B(Dtu), u〉+ 〈B(−∆u), u〉dt

=

∫ T

0

〈Bu,Dtu〉+ 〈B(−∆u), u〉dt− i〈Bu, u〉|T0

=

∫ T

0

〈Bu,∆u〉+ 〈B(−∆u), u〉dt− i〈Bu, u〉|T0

=

∫ T

0

〈∆(Bu), u〉+ 〈B(−∆u), u〉dt− i〈Bu, u〉|T0

=

∫ T

0

〈[B,−∆]u, u〉dt− i〈Bu, u〉
∣∣T
0
.

Hence, ∫ T

0

〈[B,−∆]u, u〉dt = i〈Bu, u〉
∣∣T
0
.

Using (3.2.3) gives

−
∫ T

0

〈(a′′(x)∂x + 2a′(x)∂2
x)u+ (a′′(y)∂y + 2a′(y)∂2

y)u, u〉dt = i〈Bu, u〉
∣∣T
0
.
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Moving the terms with single derivatives to one side gives

−
∫ T

0

〈2a′(x)∂2
xu, u〉+〈2a′(y)∂2

yu, u〉dt = i〈Bu, u〉
∣∣T
0

+

∫ T

0

〈a′′(x)∂xu, u〉dt+
∫ T

0

〈a′′(y)∂yu, u〉dt.

Integrating by parts in x and y and moving the terms where ∂x, ∂y hit a′(x) and a′(y)

respectively to the right hand side gives,

∫ T

0

〈2a′(x)∂xu, ∂xu〉+ 〈2a′(y)∂yu, ∂yu〉dt

= i〈Bu, u〉
∣∣T
0
−
∫ T

0

〈a′′(x)∂xu, u〉dt−
∫ T

0

〈a′′(y)∂yu, u〉dt.

Substituting in for a′(x) and a′(y) gives

2

∫ T

0

||〈x〉−1∂xu||2L2 + ||〈y〉−1∂yu||2L2dt

= i〈Bu, u〉
∣∣T
0
−
∫ T

0

〈a′′(x)∂xu, u〉dt−
∫ T

0

〈a′′(y)∂yu, u〉dt.

Taking the absolute value of both sides gives,

2

∫ T

0

||〈x〉−1∂xu||2L2 + ||〈y〉−1∂y||2L2dt ≤
∣∣∣∣〈a(x)∂xu, u〉

∣∣T
0

∣∣∣∣+

∣∣∣∣〈a(y)∂yu, u〉
∣∣T
0

∣∣∣∣
+

∫ T

0

|〈a′′(x)∂xu, u〉|dt+

∫ T

0

|〈a′′(y)∂yu, u〉|dt. (3.2.4)

If we can show that the right hand side is bounded above by CT ||u0||2H1/2 for some constant CT ,

then we have the desired bounded. This holds if
∣∣∣〈f(z)∂zu, u〉

∣∣∣ ≤ C||u0||2H1/2 for f(z) ∈ S0.
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The four inner products satisfy this for f(z) = a(z) or f(z) = a′′(z) and z = x or z = y.

∣∣∣〈f(z)∂zu, u〉
∣∣∣ =

∣∣∣〈∂zu, f(z)u〉
∣∣∣

=
∣∣∣〈〈Dz〉1/2〈Dz〉−1/2∂zu, f(z)u〉

∣∣∣
=
∣∣∣〈〈Dz〉−1/2∂zu, 〈Dz〉1/2f(z)u〉

∣∣∣, by Lemma 2.3.10

≤ ||〈Dz〉−1/2∂zu||L2||〈Dz〉1/2f(z)u||L2 , by Cauchy-Schwarz.

Note that 〈Dz〉−1/2∂z = Op 1(〈ξz〉−1/2)Op 1(1
i
ξz). Since 〈ξz〉−1/2 ∈ S−1/2 and 1

i
ξz ∈ S1,

Theorem 2.3.5 says 〈Dz〉−1/2∂z = Op 1(a1) for some a1 ∈ S1/2. Hence by Corollary 2.3.9 there

is a constant C1 such that

||〈Dz〉−1/2∂zu||L2 ≤ C1||u||H1/2 . (3.2.5)

Note that f(z) ∈ S0, so 〈Dz〉1/2f(z) = Op 1(a2) for some a2 ∈ S1/2. Hence by Corollary 2.3.9

there is a constant C2 such that

||〈Dz〉1/2(f(z)ū)||L2 ≤ C2||u||H1/2 . (3.2.6)

Combining (3.2.5) and (3.2.6) gives

∣∣∣〈f(z)∂zu, u〉
∣∣∣ ≤ C1||u||H1/2C2||u||H1/2 ≤ C||u0||2H1/2 (3.2.7)

since u solves the Schrödinger equation. Using (3.2.7) for all four inner products on the right

hand side of (3.2.4) gives

∫ T

0

||〈x〉−1∂xu||2L2 + ||〈y〉−1∂yu||2L2 ≤ CT ||u0||2H1/2

for some constant CT .
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This proof illustrates two of the important ideas throughout. The first is taking a vector

field B and commutating with ∆ so that the terms we want to estimate are the same sign.

We will use this technique to get the desired estimates away from trapped geodesics. Secondly,

it illustrates that in Euclidean space we get a gain of 1/2 derivatives. This is the best local

smoothing effect possible. On manifolds with trapping we get a worse smoothing effect.

3.3 Local Smoothing on a Surface of Revolution with Degenerate Trapping

In this section we are going to consider a surface of revolution with degenerate trapping.

From the previous section we saw that we could use a positive commutator argument to get

a local smoothing estimate for the Schrödinger equation on R2. This same idea will be used

to get a local smoothing estimate away from the trapped geodesic, allowing us to localize

near the trapped geodesic. Since the manifold is a surface of revolution, we can separate

variables to reduce a 2-dimensional problem down to 1 dimension. From there we will use

a TT ∗ argument to show that a microlocal bound on a resolvent estimate gives the desired

result. Finally, we will use a scaling argument and another positive commutator argument to

prove the resolvent estimate.

3.3.1 Setup

We are going to consider the Schrödinger equation on a surface of revolution. Let M be

the manifold Rx × S1 with the metric dx2 +A2(x)dθ2 where A(x) = (1 + x2m)
1

2m and m is an

integer greater than or equal to 2. This surface of revolution will look similar to Figure 3.3.1.

Notice that there is only a trapped geodesic at x = 0, which circles the surface of revolution

and that the metric is asymptotically Euclidean. We say this is a degenerate trapped geodesic

of order 2m since (A2)(k) = 0 for all positive integers k < 2m. Recall that A′ determines how

the x value of a geodesic curve changes and A′′/A determines the curvature for surfaces of

revolution. If more derivatives of A2 are 0 at the critical point, then we should expect the
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Figure 3.1: Surface of Revolution with Degenerate Trapping

surface to look more cylindrical near the critical point. This leads us to believe that the

degeneracy of the trapping will affect the local smoothing estimates and that the order is

important.

The local smoothing result proven in [CW13] is the following,

Theorem 3.3.1 (Christianson-Wunsch (’13)). Suppose M is the manifold Rx × Rθ/2πZ

with the metric dx2 + A2(x)dθ2 where A(x) = (1 + x2m)1/2m with m ∈ Z and m ≥ 2.

Suppose u(t, x, θ) is a solution to the Schrödinger equation on M with initial condition

u(0, x, θ) = u0(x, θ) where u0 ∈ Hs for s ≥ m
m+1

. Then for all T > 0 there is a CT > 0 such

that

∫ T

0

||〈x〉−3/2u||2H1dt ≤ CT (||〈Dθ〉m/(m+1)u0||2L2 + ||〈Dx〉1/2u0||2L2).

The paper by Christianson and Wunsch also shows that the best possible result is a

gain of 1/(m+ 1) derivatives locally averaged over time in the θ-direction and a gain in 1/2

derivatives locally averaged over time in the x-direction.

Remark 3.3.2. In the m = 1 case in the formula we would get a 1/2 gain, however there is

only a 1/2− ε gain in derivatives instead of 1/2, since this is the non-degenerate unstable
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trapping case. The same proof will work to get a log squared loss if we adjust the commutant

a in (3.3.14). As m→∞, the degenerate trapping should become worse, which we see that

it approaches no polynomial gain in derivatives. This situation as m→∞ is similar to the

degenerate unstable trapping case studied in [Chr18].

3.3.2 Proof Overview

We will follow the proof directly from [CW13] to go over the strategies used. To start

recall that,

∆f = (∂2
x + A−2∂2

θ + A−1A′∂x)f.

After a conjugation argument to get rid of the first order derivatives terms we can instead

study the operator,

∆̃f = (∂2
x + A−2∂2

θ − V1(x))f

where

V1(x) =
1

2
A′′A−1 − 1

4
(A′)2A−2.

Initially we use a positive commutator argument. This technique is similar to the proof of

local smoothing in the Euclidean case. This positive commutator argument will give

∫ T

0

(||〈x〉−1∂xu||2L2 + || |x|m〈x〉−m−3/2∂θu||2L2)dt ≤ C||u0||2H1/2 .

Note that this results shows that there is perfect local smoothing in the x-direction and that

away from x = 0 there is perfect local smoothing in the θ-direction. Now, we need to show

what happens near x = 0.

We can now separate variables to get that

u(t, x, θ) =
∑
k

eikθuk(t, x)
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with initial condition

u0(x, θ) =
∑
k

eikθu0,k(x).

After separation of variables and local smoothing away from the trapping we get the desired

theorem if we can show, for |k| ≥ 1,

∫ T

0

||χ(x)kuk||2L2dt ≤ C(||〈k〉m/(m+1)u0,k||2L2 + ||u0,k||2H1/2)

for some χ ∈ C∞c (R) with χ(x) ≡ 1 near x = 0. This comes from the fact that ∂θu(t, x, θ) =∑
k ke

ikθuk(t, x), so a derivatives in θ correspond with multiplying by k. Since we have perfect

local smoothing in the x-direction we only need to show upper bounds on the θ-direction

near x = 0.

The next technique we will use is to break up u into parts where the angular frequency is

high compared to the radial frequency and where the angular frequency is low compared to

the radial frequency. We will call these the high and low frequency parts respectively.

Let ψ ∈ C∞c (R) be an even function with ψ(r) ≡ 1 for |r| ≤ 1 and ψ(r) ≡ 0 for |r| ≥ 2.

Let

u = uhi + ulo

where

uhi = ψ(Dx/k)u, ulo = (1− ψ(Dx/k))u.

Intuitively, the obstruction to a locally smoothing estimate is the trapped geodesic which

goes around the surface. If the radial frequency is high, then the waves will spread out quicker.

The issue is when the angular frequency is high and the waves stay circling near the trapped

geodesic at x = 0 for a long time. Specifically, on supp (1 − ψ), we get |k| . 〈Dx〉, so we

can control ulo by the radial derivative where we have local smoothing estimates up to a

compactly supported region similar to ψ. Taking ψ̃ to have the same properties as ψ but is 1
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on supp (ψ), this breakdown allows us to get the desired result if we can show

∫ T

0

||χkψ̃(Dx/k)u||2L2dt ≤ C||km/(m+1)u0||2L2 . (3.3.3)

To handle the high frequency argument we will do a TT ∗ argument. Although in our case

it will be FF ∗, since we used T already. Let

Pk = D2
x + A−2(x)k2 + V1(x).

and let F (t) be defined by

F (t)g = χ(x)ψ(Dx/k)k
1

m+1 e−itPkg

where e−itPk is the Schrödinger propagator. If we can show F is a bounded mapping

F : L2
x → L2

t ([0, T ])L2
x, then

||χkψ̃(Dx/k)u||L2
t ([0,T ]);L2

x
= ||k

m
m+1F (t)u0||L2

t ([0,T ]);L2
x
≤ C||k

m
m+1u0||L2

x

holds for some constant C and gives the desired estimate in (3.3.3). There is a bounded map-

ping F : L2
x → L2

t ([0, T ])L2
x if and only if there is a bounded mapping FF ∗ : L2

t ([0, T ])L2
x →
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L2
t ([0, T ])L2

x where F ∗ is the adjoint of F .

〈F (t)g(x), q(t, x)〉L2
t ([0,T ])L2

x
=

∫ T

0

∫
R
F (s)g(x)q(s, x)dxds (3.3.4)

=

∫ T

0

∫
R
χ(x)ψ(Dx/k)k

1
m+1 e−isPkg(x)q(s, x)dxds (3.3.5)

=

∫ T

0

∫
R
ψ(Dx/k)k

1
m+1 e−isPkχ(x)g(x)q(s, x)dxds (3.3.6)

=

∫ T

0

∫
R
k

1
m+1 e−isPkψ(Dx/k)χ(x)g(x)q(s, x)dxds (3.3.7)

=

∫ T

0

∫
R
g(x)k

1
m+1 eisPkψ(Dx/k)χ(x)q(s, x)dxds (3.3.8)

=

∫
R
g(x)

∫ T

0

k
1

m+1 eisPkψ(Dx/k)χ(x)q(s, x)dsdx (3.3.9)

= 〈g(x), (F ∗q)(x)〉L2
x

(3.3.10)

where

(F ∗q)(x) =

∫ T

0

k
1

m+1 eisPkψ(Dx/k)χ(x)q(s, x)ds.

Line (3.3.6) follows since we are just mulplying by χ(x). Line (3.3.7) follows from ψ(Dx/k)

being self-adjoint. Line (3.3.8) comes from eisPk being unitary.

Applying FF ∗ to a function f gives

FF ∗f(t, x) = χ(x)ψ(Dx/k)k
2

m+1

∫ T

0

ei(t−s)Pkψ(Dx/k)χ(x)f(s, x)ds.

We want to break FF ∗f(t, x) up into two pieces FF ∗f(t, x) = χψ(v1 + v2) so that vj solve

a differential equation. Then we can apply a resolvent estimate to show FF ∗ is a bounded

operator. If we let

v1 = k
2

m+1

∫ t

0

ei(t−s)Pkψ(Dx/k)χ(x)f(s, x)ds

and

v2 = k
2

m+1

∫ T

t

ei(t−s)Pkψ(Dx/k)χ(x)f(s, x)ds,
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then vj solves the equation

(Dt + Pk)vj = ±ik
2

m+1ψχf.

Now we take the Fourier transform with respect to t to get

(τ + Pk)v̂j = ±ik
2

m+1ψχf̂ .

The idea is if a resolvent exists, then we have

χψv̂j = ±ik
2

m+1χψ(τ ± i0 + Pk)
−1ψχf̂ . (3.3.11)

and

||χψv̂j||L2
t ([0,T ])L2

x
≤ C||f̂ ||L2

t ([0,T ])L2
x

(3.3.12)

for some constant C. Since the Fourier transform is unitary, given (3.3.12) we get

||FF ∗f ||L2
t ([0,T ])L2

x
≤ ||χψv1||L2

t ([0,T ])L2
x

+ ||χψv2||L2
t ([0,T ])L2

x
≤ 2C||f ||L2

t ([0,T ])L2
x
.

Take −z = τk−2 and h = k−1, then showing (3.3.11) and (3.3.12) is given by proving

||χψ(−zh−2 ± i0 +D2
x + A−2(x)h−2 + V1(x))−1ψχ||L2

x→L2
x
≤ Ch

2
m+1 .

After factoring out h2 on the left hand side we get the necessary estimate to show will be

||χ(x)ψ(hDx)(−z ± i0 + (hDx)
2 + V )−1ψ(hDx)χ(x)||L2→L2 ≤ Ch−2( m

m+1
) (3.3.13)

where V = A−2(x) + h2V1(x).

This allows us to reduce the local smoothing estimate to proving this microlocal resolvent

estimate. This low and high frequency decomposition and FF ∗ argument will also be used

when we get to the multi-warped case. However, we will have two parameters p, n instead of
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just k. This means we will have to be more careful with what we mean by the low and high

frequency parts. We will also need to isolate at a critical point that is moving depending on

p, n. However, the ideas used in the degenerate surface of revolution case remain the same.

Now, showing this resolvent estimate is equivalent to

C||(Q1 − z)v||L2(x) ≥ h2m/(m+1)||v||L2(x)

for Q1 = (hDx)
2 + V − h2V1 and v = ϕwu with ϕ ∈ S0(R) with compact support in

{|(x, ξ)| ≤ ε}.

To do this we notice that

C||(Q1 − z)v||L2(x) ||v||L2(x) ≥ |〈[Q1 − z, aw]v, v〉| (3.3.14)

when aw is a bounded operator and Q1 is essentially self-adjoint.

We will go over the intuition behind the choice of commutant a, review why we need to

use a two parameter calculus in this proof and where we derive the powers of h that we use to

scale x and ξ. We introduce the commutator in (3.3.14) so that due to the Weyl quantization

the first term is given by h〈Op w
h (Hq1(a))v, v〉 where q1 is the symbol of Q1 and we only have

odd order terms. The main idea is that q1 ∼ ξ2 − x2m, which has a negative term, however

we can get rid of the negative term using the correct commutant. If a = h−1xξ, then

h{q1, a} = {ξ2 − x2m, xξ} = 2ξ2 + 2mx2m.

However, the issue is that a is unbounded, but we need a ∼ h−1xξ near 0. In [CW13] the

authors define a function Λ so that Λ(s) ∼ s near s = 0 and bounded. Then, a ∼ h−1Λ(x)Λ(ξ)

will almost give the proper a, however this is still unbounded in terms of h. To solve this

we will take a ∼ Λ(h−αx)Λ(h−βξ) with α + β = 1, however hHq1(a) ≈ (ξ2 + x2m) will only

be true on a h dependent region. To solve this we will rescale x = hαX and ξ = hβΞ.
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Then, hHq1(a) ≈ h(ξΞh−α + x2m−1Xh−β) = h(Ξ2h−α+β + X2mh−β+(2m−1)α). We want

h−α+β = h−β+(2m−1)α and β + α = 1 to get the lowest power of h. Solving the two equations

gives α = 1/(m+ 1) and β = m/(m+ 1). Hence,

hHq1(a) ≈ h2m/(m+1)(X2m + Ξ2)

for X,Ξ ≤ C for some constant independent of h.

Remark 3.3.15. The case where x = hαX and ξ = hβΞ for α, β = 1/2 is considered the

standard rescaling. However, since α + β = 1 we will still have

〈hOp w
h (Hq1(a))u, u〉 ≈ h2m/(m+1)〈Op w

1 (X2m + Ξ2)u, u〉.

The last issue is that we will have higher order terms. Specifically looking at the third

order term we will get a term similar to h3h−3βh(2m−3)αX2m−2 = h2m/(m+1)X2m−2. There is

no gain in powers of h to absorb the higher order terms which is an issue since X2m−2 > X2m

for X < 1. This is why we need to introduce a second parameter h̃. In [CW13], they use the

scaling x = (h/h̃)αX and ξ = (h/h̃)βΞ. With this scaling the third order and higher terms

will now have the same powers of h, but gain powers of h̃. By taking h̃ sufficiently small we

can absorb the higher order terms.

Remark 3.3.16. We have glanced over the details here to explain the intuition for the

argument and the need for the two parameter calculus. Calculating [Q1 − z, aw] will be the

major issue for proving the local smoothing estimate for the multi-warped product with two

infinite ends case and will be covered in full detail in Chapter 4.

3.3.3 Conclusion

The main techniques we will use in the multi-warped product case are those used in

[CW13]. The difference is that we will have a range of trapping rather than a single point. We
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will then separate variables to reduce it to a 1-dimensional problem. This is the advantage to

studying a multi-warped product. We will first prove local smoothing away from the trapping.

We will then break down into the high and low angular frequency parts. The difference in

the multi-warped product case is that we will have two angular frequencies. Then, we will do

a TT ∗ argument to reduce the local smoothing estimate to a microlocal resolvent estimate.

Finally, we will do a similar commutator and two parameter scaling argument. The main

difference here is that h will be dependent on both angular frequencies and estimating the

terms of commutator is more complicated.

3.4 Other Related Results

Next we will cover two other related results to the paper [CW13]. These proofs will follow

a similar process, however there will be changes that are necessary.

3.4.1 Inflection Trapping

In the paper [CM14] by Christianson and Metcalfe, they extend the degenerate trapping

on a surface of revolution to inflection-transmission trapping. In this case we will have the

following result,

Theorem 3.4.1 (Christianson-Metcalfe (’14)). Suppose M is the manifold Rx × S1 with the

metric dx2 + A2(x)dθ2 where

A2(x) = 1 +

∫ x

0

y2m1−1(y − 1)2m2/(1 + y2)m1+m2−1dy

for positive integers m1 and m2. Suppose u solves


(Dt −∆M)u(t, x) = 0

u|t=0 = u0 ∈ Hs
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for some s > 0 sufficiently large. Then, for all ∞ > T > 0 there is a CT > 0 such that

∫ T

0

||〈x〉−1∂xu||2L2 + ||〈x〉−3/2∂θu||2L2dt

≤ CT (||〈Dθ〉β(m1,m2)u0||2L2 + ||〈Dx〉1/2u0||2L2)

where

β(m1,m2) = max

(
m1

m1 + 1
,
2m2 + 1

2m2 + 3

)
.

Figure 3.2 from [CM14] shows roughly what the manifold M looks like.

Figure 3.2: Surface of revolution with inflection point trapping from [CM14]

There is degenerate trapping of order 2m1 at x = 0 as in [CW13] and inflection-transmission

trapping at x = 1 of order 2m2 + 1. This proof follows the same strategy as [CW13]. The

main difference is that we have two points of trapping to deal with. This requires a positive

commutator argument to get local smoothing away from x = 0 and x = 1. Then, we do the

same separation of variables, high and low frequency decomposition and TT ∗ argument. The

difference is that we then have to isolate around the two critical points instead of one. The

estimate around x = 0 follows from [CW13], while the estimate around x = 1 is proved using

a scaling argument and two-parameter calculus again. This estimate is different because

A′ does not change sign at x = 1. The main change in this paper is showing that we
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can isolate around each trapped geodesic and then showing the necessary estimates in the

inflection-transmission trapping case.

3.4.2 Multi-Warped Inflection Trapping

In [CN22], Christianson and the author extend the inflection point trapping estimate to

multi-warped products. In this case we consider the functions A2
1 and A2

2 in Figure 3.3.

x = 1

x = 2

A2
2(x)

A2
1(x)

x = 2

Figure 3.3: The functions A2
1 and A2

2.

Then, we defined the multi-warped product X = R+ × S1 × S1 with the metric

g = dx2 + A2
1(x)dθ2 + A2

2(x)dω2.

Notice that there is inflection-transmission trapping at x = 1 of order 2m1 + 1 and x = 2 of

order 2m2 + 1, but the trapping at x = 1 is only in the θ-direction and at x = 2 the trapping

is only in the ω-direction.

The result we get is,
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Theorem 3.4.2. Let (M, g) be the multi-warped product constructed above. Suppose u solves

the Schrödinger equation on M with initial condition u0 ∈ S (M). Let m = max(m1,m2).

Then for each T > 0 there exists a constant C such that

∫ T

0

‖ 〈x〉−3/2 u‖2
H1(M)dt ≤ C‖u0‖2

H
2m+1
2m+3 (M)

. (3.4.3)

This proof follows the same strategy as [CW13]. The main difference is that we have

two angular directions, however the trapping is only in one direction at each point. This

allows us to separate variables in only one direction to get the estimates at x = 1 and x = 2

separately. Once we separate variables, we have a function with two parameters rather than

one parameter like in [CW13] and [CM14]. We solve this issue by showing that the extra

dimension does not harm the local smoothing estimate, because we have local smoothing in

the extra direction near x = 1. After making sure this is the case and working through the

low frequency estimates this case reduces to the result proven in [CM14].

Remark 3.4.4. The result proven in this paper will follow a similar process to [CW13],

[CM14], and [CN22]. One main difference is that we have trapping that when projected to the x-

direction after separating variables forms a countable dense subset of an interval. Additionally,

this trapping is dependent on both angular frequencies. This prevents a straightforward positive

commutator argument. The other main difference is that we will actually separate variables

in both angular directions, since the trapping is not isolated in a single direction.
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CHAPTER 4

MULTI-WARPED PRODUCTS WITH TWO INFINITE ENDS

4.1 Introduction

In this chapter we will use the proof methods used in [CW13], [CM14], and [CN22] to

show a local smoothing result of the Schrödinger equation on a multi-warped product where

the projection of the trapped trajectories onto the x-coordinate after separating variables is a

countable dense subset of the interval [−ε, ε]. We will start by considering the multi-warped

manifold M = R× S1 × S1 where the metric is given by

g(x, θ, ω) = dx2 + U−(x)2dθ2
− + U+(x)2dθ2

+.

The U2
− and U2

+ will look roughly like the following functions in Figure 4.1 near 0.

x = εx = −ε
U2
−(x) U2

+(x)

Figure 4.1: Warping Functions

Note that the Laplacian will be determined by U−1
± , so that there is finite degenerate

unstable trapping in the θ− direction at −ε and there is finite degenerate unstable trapping

in the θ+ direction at ε. We will want g to be Euclidean outside of a compact set.
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The important fact to notice from this setup compared to the setup in [CN22] is that

for x ∈ (−ε, ε), U2
−(x) is increasing while U2

+(x) is decreasing. This causes trapping on this

region rather than being isolated at two points in the radial direction like in [CN22]. As a

result, we will get perfect local smoothing only outside of [−ε, ε] and will gain less than 1/2

derivatives on the region depending on the point x ∈ [−ε, ε] and the nature of the trapping.

4.2 Set-up

The picture given in Figure 4.1 will guide the setup of the problem. We will make slight

changes to help with calculations.

To start we will define the following functions to construct the metric. Fix 1 > ε > 0

First, let K ∈ C∞c (R) be a cutoff function so that

K(x) =


1 −2ε ≤ x ≤ 2ε

0 4ε ≤ |x|

K(x) ≥ 0, K ′(x) ≥ 0 on [−4ε,−2ε] and K ′(x) ≤ 0 on [2ε, 4ε], K(x) is even and has a smooth

square root K1/2(x). Let m1,m2 ≥ 2 be a positive integer. Define the function

V+(x) = K(x)(M̃ − (x− ε)2m1) + (1−K(x))x−2

and

V−(x) = K(x)(M̃ − (x+ ε)2m2) + (1−K(x))x−2

where ε > 0 and M̃ > (5ε)2m1 and M̃ > (5ε)2m2 . The choice of sign is so that V+ has a

critical point at x = ε and V− has a critical point at x = −ε. The choice of M̃ is so that

K(x)(M̃ − (x− ε)2m1) > 0 and K(x)(M̃ − (x+ ε)2m2) > 0. The nature of V+ is such that it

has a single degenerate critical point of order 2m1 at x = ε and is equal to x−2 outside of a

compact set. The nature of V− is such that it has a single degenerate critical point of order
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2m2 at x = −ε and is equal to x−2 outside of a compact set.

Let U± = V
−1/2
± for convenience. With these definitions we consider a manifold M =

R× S1 × S1 with coordinates (x, θ+, θ−) and the metric

g = dx2 + V −1
− (x)dθ2

− + V −1
+ (x)dθ2

+ = dx2 + U2
−(x)dθ2

− + U2
+(x)dθ2

+.

Then,

∆M = ∂2
x + V−(x)∂2

θ− + V+(x)∂2
θ+

+
U ′+U− + U+U

′
−

U+U−
∂x.

We will prove the following theorem,

Theorem 4.2.1 (Main Result). Let M be the multi-warped product with ∆M constructed

above with the case m1 = m2 = 2. Let u be a solution to the Schrödinger equation on M with

initial condition u0 ∈ S (M). For each T > 0 there exists a constant C such that

∫ T

0

||〈x〉−3/2u||2H1(M)dt ≤ C||u0||2H2/3(M).

Additionally, as a result of the proof of this theorem we have the following resolvent

estimate,

Theorem 4.2.2. Let R(λ) = (−∆M−λ2)−1 denote the resolvent on M . For any χ ∈ C∞c (M),

there exists a constant C > 0 such that for λ ∈ R and λ� 0,

||χR(λ− i0)χ||L2→L2 ≤ Cλ−2/3.

Remark 4.2.3. The local smoothing away from the trapping in Proposition 4.3.42 holds for

all integer m1,m2 ≥ 2. The estimate in (4.4.13) to prove local smoothing near the trapping is

where we need to reduce to the case m1 = m2 = 2.

Before we begin, we want to do a conjugation argument to reduce the Laplacian and
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volume form U+U−. Let T = (U+U−)1/2. Then,

∆̃ = T∆T−1 = ∂2
x + V−(x)∂2

θ− + V+(x)∂2
θ+

+ V1(x)

for

V1(x) =
U2

+(U ′−)2 + (U ′+)2U2
− − 2U2

+U
′′
−U− − 2U ′′+U+U

2
− − 2U+U−U

′
+U
′
−

4U2
+U

2
−

.

Let ũ = Tu and ũ0 = Tu0. As explained in Section A.3, if ũ solves


(Dt − ∆̃)ũ(t, x) = 0

ũ(0, x) = ũ0(x),

(4.2.4)

then u is a solution to 
(Dt −∆)u(t, x) = 0

u(0, x) = u0(x).

(4.2.5)

Additionally, if

∫ T

0

||〈x〉−3/2ũ||2H1(X,dxdθ−dθ+)dt ≤ C||ũ0||2H2/3(X,dxdθ−dθ+)

for some constant C > 0 holds, then

∫ T

0

||〈x〉−3/2u||2H1(X,dV ol)dt ≤ C ′||u0||2H2/3(X,dV ol)

holds as well for some constant C ′ > 0.
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4.3 Local smoothing away from trapping

4.3.1 Separation of variables

In [CN22], we would now do a positive commutator to get local smoothing away from the

trapping. The idea is that we need to use a function f(x) such that −f(x)V ′−(x) ≥ 0 and

−f(x)V ′+(x) ≥ 0 for all x. However, this argument would only work outside of the region

[−ε, ε], since V ′+ and V ′− have different signs on this range. To handle this interval we will

separate variables first. Due to the manifold being a multi-warped product, we can write a

solution u to (Dt − ∆̃M)u = 0 with u(0, x) = u0(x) ∈ S as

u(t, x, θ+, θ−) =
∑
p,n

up,n(t, x)eipθ+einθ−

and

u0(x, θ+, θ−) =
∑
p,n

up,n,0(x)eipθ+einθ−

where

(Dt − ∆̃p,n)up,n(t, x) = (Dt +D2
x + p2V+(x) + n2V−(x) + V1(x))up,n(t, x) = 0

and

up,n(0, x) = up,n,0(x).

We can see that up,n is the solution to a 1-dimensional Schrödinger equation. Let

Vp,n = p2V+(x) + n2V−(x). (4.3.1)
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4.3.2 Norm conservation

Before we compute the positive commutator argument we will show that the Hs norm is

conserved for each up,n. For each up,n(t, x) we define

lsp,n(x, ξ) = (ξ2 + (C + p2V+(x) + n2V−(x) + V1(x)))s

where C > 0 is chosen so that (C + p2V+(x) + n2V−(x) + V1(x)) ≥ 0. This guarantees that

lsp,n is real. Let bp,n(x, ξ) = ξ2 + p2V+(x) + n2V−(x) + V1(x) so that ∆̃p,n = bwp,n.

[Op w(lsp,n), ∆̃p,n] = 2

(
∞∑
k=0

(iA(D))2k+1

(2k + 1)!
(lsp,n(x, ξ)bp,n(y, η))

∣∣∣
x=y,ξ=η

)w

(4.3.2)

where the right hand side of (4.3.2) is a formal asymptotic expansion. First note that

A(D)(lsp,n(x, ξ)bp,n(y, η)) = s(V ′p,n(x) + V ′1(x))ls−1
p,n (2ξ)− (2sξls−1

p,n )(V ′p,n(x) + V ′1(x)) = 0.

This implies that

[Op w(lsp,n), ∆̃p,n] = 2

(
∞∑
k=1

(iA(D))2k+1

(2k + 1)!
(lsp,n(x, ξ)bp,n(y, η))

∣∣∣
x=y,ξ=η

)w

.

Note that ∂x∂ξb = 0 and ∂3
ξ b = 0. Hence,

A(D)2k+1lsp,n(x, ξ)bp,n(y, η)
∣∣
x=y,ξ=η

=
1

22k+1
D2k+1
ξ

(
lsp,n(x, ξ)

)
D2k+1
y

(
bp,n(y, η)

)∣∣∣
x=y,ξ=η

.

Now,

|D2k+1
y bp,n(y, η)| ≤ Cklp,n (4.3.3)

for some constant Ck dependent on k. Additionally

|D2k+1
ξ lsp,n(x, ξ)| ≤ Ck,sl

s− 2k+1
2

p,n . (4.3.4)
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This is due to fact that we lose one power of ξ with each derivative and

|ξ| ≤ (ξ2 + C + p2V+(x) + n2V−(x) + V1(x))1/2.

Combining the estimates in (4.3.3) and (4.3.4) gives

∣∣∣∣A(D)2k+1lsp,n(x, ξ)bp,n(y, η)|x=y,ξ=η

∣∣∣∣ ≤ Ck,sl
s− 2k+1

2
+1

p,n .

Since the expansion begins with k = 1, we have

∣∣∣∣∣∣[Op w(lsp,n), ∆̃p,n]u
∣∣∣∣∣∣
L2
≤ Cs||Op w(ls−1/2

p,n )u|| ≤ Cs||Op w(lsp,n)u||L2 .

Let Es
p,n(t) =

∫
R |Op w(l

s/2
p,n )up,n|2dx. Then,

d

dt
Es
p,n(t) =

∫
R
(Op w(ls/2p,n )s/2∂tup,n)Op w(ls/2p,n )ūp,ndx+

∫
R
(Op w(ls/2p,n )up,n)Op w(ls/2p,n )∂tūp,ndx

=

∫
M

Op w(ls/2p,n )(∆̃p,nup,n)Op w(ls/2p,n )ūp,ndx−
∫
R
Op w(ls/2p,n )up,nOp w(ls/2p,n )(∆̃p,nūp,n)dx

=2 Re i

∫
R
(Op w(ls/2p,n )(∆̃p,nup,n))Op w(ls/2p,n )ūp,ndx

=2 Re i

∫
R
[Op w(ls/2p,n ), ∆̃p,n]up,nOp w(ls/2p,n )ūp,ndx

≤
∣∣∣∣[Op w(ls/2p,n ), ∆̃p,n]up,n

∣∣∣∣
L2

∣∣∣∣Op w(ls/2p,n )up,n
∣∣∣∣
L2

≤CsEs
p,n.

Following the calculations done in (2.5.3), we get

Es
p,n(t) ≤ Ct,sE

s
p,n(0)

for a constant Ct,s dependent on s and t. Note that ||Op w(l
s/2
p,n )u|| is equivalent to the Hs

norm, so ||up,n||Hs ≤ Ct,s||up,n,0||Hs for all t > 0.
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4.3.3 Positive commutator argument

We will now do a positive commutator argument at this point. For notational purposes

we will drop the up,n notation and just use u. Let B = f(x, p, n)∂x where f is a function

dependent on x, p, n. Then,

[∆̃p,n, B] = 2f ′(x)∂2
x + f ′′(x)∂x + p2f(x)V ′+(x) + n2f(x)V ′−(x) + f(x)V ′1(x). (4.3.5)

Note that Dt commutes with B and (Dt − ∆̃p,n)u = 0, so

[−∆̃p,n, B]u = [Dt− ∆̃p,n, B]u = (Dt− ∆̃p,n)Bu−B(Dt− ∆̃p,n)u = (Dt− ∆̃p,n)Bu. (4.3.6)

Additionally,

∫ T

0

∫
R
(Dt − ∆̃p,n)Buūdxdt

=

∫ T

0

∫
R
−∆̃p,nBuūdxdt+

1

i

[ ∫
R
Buūdx

]T
0

+

∫ T

0

∫
R
BuDtudxdt

=
1

i

[ ∫
R
Buūdx

]T
0

−
∫ T

0

∫
R
Bu(∆̃p,nu)dxdt+

∫ T

0

∫
R
BuDtudxdt

=
1

i

[ ∫
R
Buūdx

]T
0

+

∫ T

0

∫
R
Bu(Dt − ∆̃p,n)udxdt

=
1

i

[ ∫
R
Buūdx

]T
0

.

Using (4.3.6) gives ∫ T

0

∫
R
[−∆̃p,n, B]uūdxdt =

1

i

[ ∫
R
Buūdx

]T
0

.

From (4.3.5)

∫ T

0

∫
R
−
((

2f ′(x)∂2
x + f ′′(x)∂x + p2f(x)V ′+(x) + n2f(x)V ′−(x)

)
u
)
ūdxdt

=
1

i

[ ∫
R
Buūdx

]T
0

+

∫ T

0

∫
R
f(x)V ′1(x)uūdxdt.
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Integrating by parts and moving over the term with f ′′(x) gives

∫ T

0

∫
R

2f ′(x)(∂xu)∂xu− p2f(x)V ′+(x)uū− n2f(x)V ′−(x)uūdxdt

=
1

i

[ ∫
R
Buūdx

]T
0

+

∫ T

0

∫
R
f(x)V ′1(x)uūdxdt−

∫ T

0

∫
R
f ′′(x)∂xuūdxdt.

We want to estimate the absolute value of the right hand side where f(x) ∈ C∞ such

that f and all of its derivatives are bounded. Recall from the proof of local smoothing in R2

and (3.2.7) that
∣∣∣〈f(z)∂zu, u〉

∣∣∣ ≤ C||u0||2H1/2 for f(z) ∈ C∞ where f and its derivatives are

bounded. This immediately gives that

∣∣∣∣1i
[ ∫

R
Buūdx

]T
0

∣∣∣∣ ≤ CT ||u0||2H1/2 (4.3.7)

and ∣∣∣∣ ∫ T

0

∫
R
f ′′(x)∂xuūdxdt

∣∣∣∣ ≤ CT ||u0||2H1/2 (4.3.8)

for some constant CT . To handle the last term recall that

V1(x) =
U2

+(U ′−)2 + (U ′+)2U2
− − 2U2

+U
′′
−U− − 2U ′′+U+U

2
− − 2U+U−U

′
+U
′
−

4U2
+U

2
−

.

Note that U+, U− ≥ 1√
M̃

, U+, U− ∈ C∞. Additionally U±(x) = |x| outside of a compact set so

that V1(x)→ 0 as x→ ±∞. Hence, V ′1(x) ∈ C∞ and V ′1(x) and its derivatives are bounded.

We get ∣∣∣∣ ∫ T

0

∫
R
f(x)V ′1(x)uūdxdt

∣∣∣∣ ≤ C ′T ||u0||2H1/2 (4.3.9)

for some constant C ′T . Combining the estimates in (4.3.7), (4.3.8), and (4.3.9) gives

∫ T

0

〈f ′(x)∂xu, ∂xu〉+ 〈−(p2f(x)V ′+(x) + n2f(x)V ′−(x))u, u〉dt ≤ (2CT + C ′T )||u0||2H1/2 ,

if −(p2f(x, p, n)V ′+(x) + n2f(x, p, n)V ′−(x)) ≥ 0 and f ′(x, p, n) ≥ 0. To figure out the right
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function f(x, p, n) we have to understand the critical points for the potential Vp,n(x) =

p2V+(x) + n2V−(x). We will first show that the only critical point is in the interval [−ε, ε].

We have

V ′+ = K ′(x)(M̃ − (x− ε)2m1)− 2m1(x− ε)2m1−1K(x)−K ′(x)x−2 + (1−K(x))(−2x−3)

and

V ′− = K ′(x)(M̃ − (x+ ε)2m2)− 2m2(x+ ε)2m2−1K(x)−K ′(x)x−2 + (1−K(x))(−2x−3).

If |x| ≤ 2ε, we have K ′(x) = 0 and (1−K(x)) = 0. Hence,

V ′+ = −2m1(x− ε)2m1−1, V ′− = −2m2(x+ ε)2m2−1.

If ε < x ≤ 2ε, then

V ′±(x) < 0.

If −2ε ≤ x < ε, then

V ′±(x) > 0.

If |x| ≥ 4ε, we have K ′(x) = 0 and K(x) = 0. Hence,

V ′± = −2x−3. (4.3.10)

If −4ε < x < −2ε, then K ′(x) ≥ 0. So, K ′(x)(M̃ − (x − ε)2m1) ≥ 0 and K ′(x)(M̃ −

(x+ ε)2m2) ≥ 0, since M̃ was chosen so that (M̃ − (x− ε)2m1) > 0 and (M̃ − (x+ ε)2m2) >

0 on supp (K). Additionally, (−2m1(x − ε)2m1−1)K(x) ≥ 0, (−2m2(x + ε)2m2−1)K(x) ≥

0, K ′(x)(x−2) ≥ 0 and (1 − K(x))(−2x−3) ≥ 0. Furthermore, we must have (−2m1(x −

ε)2m1−1)K(x) > 0 or (1 − K(x))(−2x−3) > 0 and (−2m2(x + ε)2m2−1)K(x) > 0 or (1 −
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K(x))(−2x−3) > 0 on this range. Hence,

V ′± ≥ C (4.3.11)

for some constant C > 0.

If 4ε > x > 2ε, thenK ′(x) ≤ 0. So, K ′(x)(M̃−(x−ε)2m1) ≤ 0 andK ′(x)(M̃−(x+ε)2m2) ≤

0, since M̃ was chosen so that (M̃ − (x− ε)2m1) > 0 and (M̃ − (x+ ε)2m2) > 0 on supp (K).

Additionally, (−2m(x ± ε)2m−1)K(x) ≤ 0, K ′(x)(x−2) ≤ 0 and (1 − K(x))(−2x−3) ≤ 0.

Furthermore, we must have (−2m1(x − ε)2m1−1)K(x) < 0 or (1 −K(x))(−2x−3) < 0 and

(−2m2(x+ ε)2m2−1)K(x) < 0 or (1−K(x))(−2x−3) < 0 on this range. Hence,

V ′± ≤ −C (4.3.12)

for some constant C > 0.

Combining the estimates above for when x > ε or x < −ε gives that V ′+(x) and V ′−(x)

have the same sign for x /∈ [−ε, ε] and that V ′(x) 6= 0. Since on [−ε, ε] V ′′± ≤ 0 for each p and

n, there is only a single critical, which will be denoted xp,n, for Vp,n(x) = p2V+(x) + n2V−(x)

and xp,n ∈ [−ε, ε].

Next, define

α(x) =

∫ x

0

Υ(y)dy

for

Υ(x) =


1, |x| ≤ 3ε

CΥ/|x|3 |x| > 4ε

such that that Υ(x) is smooth and even. This implies that α(x) = x when |x| < 3ε, |α(x)|

is bounded, and α is an odd function. This tells us that by taking f(x, p, n) = α(x− xp,n),
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−(p2f(x)V ′+(x) + n2f(x)V ′−(x)) ≥ 0 for all x. Hence,

∫ T

0

||Υ1/2(x)∂xu||2L2 + 〈−(p2f(x)V ′+(x) + n2f(x)V ′−(x))u, u〉dt ≤ CT ||u0||2H1/2 . (4.3.13)

Next, we want to get a lower bound on

∫ T

0

〈−(p2f(x)V ′+(x) + n2f(x)V ′−(x))u, u〉dt.

Using the estimates (4.3.10), (4.3.11) and (4.3.12) on V ′± we have,

∫ T

0

− 〈(p2f(x)V ′+(x) + n2f(x)V ′−(x))u, u〉dt

≥C1

∫ T

0

∫
R\[−4ε,4ε]

(p2 + n2)|x|−3|u|2dxdt+ C2

∫ T

0

∫
[−4ε,−2ε]∪[2ε,4ε]

(p2 + n2)|u|2dxdt

+

∫ T

0

∫
[−2ε,2ε]

−(p2f(x)V ′+(x) + n2f(x)V ′−(x))|u|2dxdt (4.3.14)

for some constants C1, C2 > 0 and independent of n and p. We will estimate

∫ T

0

∫
[−2ε,2ε]

−(p2f(x)V ′+(x) + n2f(x)V ′−(x))|u|2dxdt

in the following section.

4.3.4 Estimates on the Potentials

The goal of this section is to prove a lower bound estimate of−(p2f(x)V ′+(x)+n2f(x)V ′−(x)).

Proposition 4.3.15. Let P (x) = p2(x−ε)2m1 +n2(x+ε)2m2 for positive integers p, n,m1,m2.

Let x0 be the critical point of P (x). Then,

P ′(x)(x− x0) ≥ Cε,m1,m2

[
(p2(x− x0)2m1 + n2(x− x0)2m2 + min{p2, n2}(x− x0)2

]
for a constant Cε,m1,m2 > 0 dependent on ε, m1, and m2, but independent of p, n.
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With Proposition 4.3.15 we have that

∫ T

0

∫
[−2ε,2ε]

−(p2f(x)V ′+(x) + n2f(x)V ′−(x))|u|2dxdt

≥
∫ T

0

∫
[−2ε,2ε]

Cε,m1,m2

[
(p2(x− x0)2m1 + n2(x− x0)2m2 + min{p2, n2}(x− x0)2

]
|u|2dxdt,

(4.3.16)

since −(p2f(x)V ′+(x) + n2f(x)V ′−(x)) = P ′(x)(x− x0) when |x| ≤ 2ε.

Remark 4.3.17. This estimate tells us that if p� n or n� p, then our estimate is similar

to the x2m1 case or x2m2 case in [CW13] respectively. When p ∼ n, the estimate is similar to

the x2 case in [Chr08].

We will prove Proposition 4.3.15 by using Lemmas 4.3.18 and 4.3.19.

Lemma 4.3.18. Let P (x) = p2(x − ε)2m1 + n2(x + ε)2m2 where p, n,m1,m2 are positive

integers and x0 is the critical point of P (x). Then,

P ′(x)(x− x0) ≥ Cε,m1,m2 min{p2, n2}(x− x0)2

for a constant Cε,m1,m2 > 0 dependent on ε, m1 and m2, but independent of p and n.

Lemma 4.3.19. Let P (x) = p2(x − ε)2m1 + n2(x + ε)2m2 for positive integers p, n,m1,m2.

Let x0 be the critical point of P (x). Let |x| ≤ 2ε. Then,

P ′(x)(x− x0) ≥ C(p2(x− x0)2m1 + n2(x− x0)2m2)

for a positive constant C independent of p and n.

Lemma 4.3.19 will follow from breaking the estimate up into the cases when |x| ≤ ε and

when |x| > ε. We will need Lemma 4.3.20 for the case when |x| ≤ ε to prove Lemma 4.3.19.
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Lemma 4.3.20. Let Y, Z > 0 with Z > Y and m a positive integer. Then,

(Y − Z)2m−1 ≥ Y 2m−1 − Z2m−1.

Remark 4.3.21. Note that Y 2m−1 − Z2m−1 is negative, so we will have to be careful using

this estimate with inequalities.

We will need Lemma 4.3.22 for when |x| > ε to prove Lemma 4.3.19.

Lemma 4.3.22. Let 1 > Y > −1, 2 ≥ Z > 1 and m1 and m2 be positive integer. There

exists a C > 0 such that

(Y + 1)2m2−1(Z − 1)2m1−1 + (Z + 1)2m2−1(1− Y )2m1−1 ≥ C(Z − Y )2m1−1.

Once we have both lemmas, we can combine the results from Lemma 4.3.18 and 4.3.19 to

get Proposition 4.3.15.

We will begin by proving Lemmas 4.3.20 and 4.3.22, since they will be needed for Lemma

4.3.19.

Proof of Lemma 4.3.20. We will do a proof by induction. Recall that for this lemma Y, Z > 0

with Z > Y and m a positive integer. For m = 2,

(Y − Z)3 = Y 3 − 3Y 2Z + 3Y Z2 − Z3

≥ Y 3 − Z3,

since Y 2Z < Y Z2.
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Suppose (Y − Z)2m−1 ≥ Y 2m−1 − Z2m−1 holds for arbitrary m ≥ 2. Then,

(Y − Z)2m+1 = (Y − Z)2m−1(Y − Z)2

≥ (Y 2m−1 − Z2m−1)(Y − Z)2

= (Y 2m−1 − Z2m−1)(Y 2 − 2Y Z + Z2)

= Y 2m+1 − 2Y 2mZ + Y 2m−1Z2 − Z2m−1Y 2 + 2Y Z2m − Z2m+1

= Y 2m+1 − Z2m+1 + (−2Y 2mZ + Y 2m−1Z2 − Z2m−1Y 2 + 2Y Z2m)

≥ Y 2m+1 − Z2m+1

if −2Y 2mZ + Y 2m−1Z2 − Z2m−1Y 2 + 2Y Z2m ≥ 0. For Y, Z > 0 and Z > Y

−2Y 2mZ + Y 2m−1Z2 − Z2m−1Y 2 + 2Y Z2m = Y Z(2Z2m−1 + Y 2m−2Z − 2Y 2m−1 − Z2m−2Y )

= Y Z
(
Z(2Z2m−2 + Y 2m−2)− Y (2Y 2m−2 + Z2m−2)

)
≥ 0.

Proof of Lemma 4.3.22. Recall we have that 1 > Y > −1, 2 ≥ Z > 1, and m1 and m2 are

positive integers. Let Z − Y = δ and 1 − Y = cδ, so that Z − 1 = (1 − c)δ. Note that

(1− c) > 0, c > 0, and δ > 0. Then,

(Z − Y )−(2m1−1)
[
(Y + 1)2m2−1(Z − 1)2m1−1 + (Z + 1)2m2−1(1− Y )2m1−1

]
= (Y + 1)2m2−1(1− c)2m1−1 + (Z + 1)2m2−1c2m1−1.

If Y ≥ 0, then

(Y + 1)2m2−1(1− c)2m1−1 + (Z + 1)2m2−1c2m1−1 ≥ (1− c)2m1−1 + c2m2−1 ≥ C (4.3.23)

for a constant C > 0 independent of Y, Z. If Y ≤ 0, then c ≥ 1
2
, since Z ≤ 2. Using this and
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that Z > 1 gives

(Y + 1)2m2−1(1− c)2m1−1 + (Z + 1)2m2−1c2m1−1 ≥ 22m2−12−(2m1−1) ≥ 22m2−2m1 . (4.3.24)

Combining the estimates from (4.3.23) and (4.3.24) gives that there is a constant C > 0 such

that

(Z − Y )−(2m1−1)[(Y + 1)2m2−1(Z − 1)2m1 + (Z + 1)2m2−1(1− Y )2m1−1] ≥ C (4.3.25)

for −1 < Y < 1. Multiplying by (Z − Y )(2m1−1) on both sides of (4.3.25) gives

(Y + 1)2m2−1(Z − 1)2m1−1 + (Z + 1)2m2−1(1− Y )2m1−1 ≥ C(Z − Y )2m1−1

as desired.

Proof of Lemma 4.3.19. Recall

P (x) = p2(x− ε)2m1 + n2(x+ ε)2m2 .

From the definition of P (x) note that the critical point x0 will satisfy,

2m1p
2(x0 − ε)2m1−1 + 2m2n

2(x0 + ε)2m2−1 = 0. (4.3.26)

Calculating P ′(x)(x− x0) gives

P ′(x)(x− x0) =
[
2m1p

2(x− ε)2m1−1 + 2m2n
2(x+ ε)2m2−1

]
(x− x0)

=
[
2m1p

2((x− x0) + (x0 − ε))2m1−1 + 2m2n
2((x− x0) + (x0 + ε))2m2−1

]
(x− x0).

Note that (x0−ε) ≤ 0 and (x0+ε) ≥ 0. This implies if x < x0, then ((x−x0)+(x0−ε))2m1−1(x−

x0) ≥ (x− x0)
2m1 + (x0 − ε)2m1−1(x− x0) holds, since both (x− x0) < 0 and (x0 − ε) < 0.
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Similarly, if x > x0, then ((x−x0)+(x0 +ε))2m2−1(x−x0) ≥ (x−x0)2m2 +(x0 +ε)2m2−1(x−x0)

holds, since both (x− x0) > 0 and (x0 + ε) > 0.

Note that if x = ε, then

((x− x0) + (x0 − ε))2m1−1(x− x0) = 0 = (x− x0)2m1 + (x0 − ε)2m1−1(x− x0). (4.3.27)

Additionally, if x = −ε, then

((x− x0) + (x0 + ε))2mw−1(x− x0) = 0 = (x− x0)2m1 + (x0 − ε)2m2−1(x− x0). (4.3.28)

If ε ≥ x > x0, then using the Lemma 4.3.20 and (4.3.27)

((x− x0) + (x0 − ε))2m1−1(x− x0) ≥ (x− x0)2m1 + (x0 − ε)2m1−1(x− x0).

Note that x − x0 is positive, so even though (x − x0)
2m1−1 + (x0 − ε)2m1−1 is negative the

inequality holds. Similarly, if −ε ≤ x < x0, then using Lemma 4.3.20 with Y = (x − x0),

Z = −(ε− x0) and (4.3.28) gives

((x− x0) + (x0 + ε))2m2−1(x− x0) = ((x0 − x) + (−ε− x0))2m2−1(x0 − x)

≥ (x0 − x)2m2 + (−ε− x0)2m2−1(x0 − x)

= (x− x0)2m2 + (x0 + ε)2m2−1(x− x0).
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Combining these results gives

P ′(x)(x− x0)

=
[
2m1p

2((x− x0) + (x0 − ε))2m1−1 + 2m2n
2((x− x0) + (x0 + ε))2m2−1

]
(x− x0)

≥2m1p
2[(x− x0)2m1 + (x0 − ε)2m1−1(x− x0)] + 2m2n

2[(x− x0)2m2 + (x0 + ε)2m2−1(x− x0)]

=2(m1p
2(x− x0)2m1 +m2n

2(x− x0)2m2 + [m1p
2(x0 − ε)2m1−1 +m2n

2(x0 + ε)2m2−1](x− x0))

=2m1p
2(x− x0)2m1 + 2m2n

2(x− x0)2m2 , by equation (4.3.26) (4.3.29)

as desired for −ε ≤ x ≤ ε.

Now, we need to handle the case when |x| ≥ ε. First we will consider x > ε. In this case

P ′(x)(x− x0) ≥ 2m2n
2(x− x0)2m2 (4.3.30)

since x+ ε > x− x0. Our goal will be to show

P ′(x)(x− x0) ≥ Cp2(x− x0)2m1−1(x− x0) (4.3.31)

for 2ε ≥ x > ε. The idea will be to replace n in the equation for P ′(x) with p. We will use

(4.3.26) to get

m2n
2 = −2m1p

2(x0 − ε)2m1−1(x0 + ε)−(2m2−1). (4.3.32)

Substituting (4.3.32) into the equation for P ′(x) gives

P ′(x) = 2m1p
2((x− ε)2m1−1 − (x+ ε)2m2−1(x0 − ε)2m1−1(x0 + ε)−(2m2−1))

=
2m1p

2

(x0 + ε)2m2−1
((x− ε)2m1−1(x0 + ε)2m2−1 + (x+ ε)2m2−1(ε− x0)2m1−1). (4.3.33)

The case for x0 = −ε is when p = 0 and the case for x0 = ε is when n = 0 and x− ε = x−x0.

In both cases (4.3.31) holds. Now, let x0 = Y ε and x = Zε for 1 > Y > −1 and 2 ≥ Z > 1.
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Then,

P ′(x) =
2m1p

2ε2m1−1

(Y + 1)2m2−1
((Y + 1)2m2−1(Z − 1)2m1−1 + (Z + 1)2m2−1(1− Y )2m1−1) (4.3.34)

Note that x− x0 = (Z − Y )ε. Using Lemma 4.3.22 and noting 0 < (Y + 1) ≤ 2 gives

P ′(x)(x− x0) ≥ C
2m1p

2ε2m1−1

22m2−1
(Z − Y )2m−1(x− x0)

≥ C
2m1

22m2−1
p2(x− x0)2m1 (4.3.35)

for a constant C > 0. Hence,

P ′(x)(x− x0) ≥ Cp2(x− x0)2m1 (4.3.36)

as desired for C > 0 independent of p and n. Combining (4.3.36) and (4.3.30) gives

P ′(x)(x− x0) ≥ C(p2(x− x0)2m1 + 2m2n
2(x− x0)2m2) (4.3.37)

for 2ε ≥ x > ε.

If x < −ε, then (x− ε) < (x− x0) < 0. So,

P ′(x)(x− x0) = 2m1p
2(x− ε)2m1−1(x− x0) ≥ 2m1p

2(x− x0)2m1 . (4.3.38)

Our goal will be to show

P ′(x) = 2m1p
2(x− ε)2m1−1 + 2m2n

2(x+ ε)2m2−1 ≤ Cn2(x− x0)2m2−1 (4.3.39)

since P ′(x) < 0 and (x− x0) < 0. Let y = −x and y0 = −x0. Then, (4.3.39) is equivalent to
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showing

P ′(y) = 2m1p
2(y + ε)2m1−1 + 2m2n

2(y − ε)2m2−1 ≥ Cn2(y − y0)2m2−1 (4.3.40)

for 2ε ≥ y > ε. Now (4.3.36) tells us that (4.3.40) holds by swapping m2 with m1 and p with

n. Combining (4.3.40) and (4.3.38) gives

P ′(x)(x− x0) ≥ C(p2(x− x0)2m1 + n2(x− x0)2m2) (4.3.41)

for −2ε ≤ x < −ε for a constant C > 0 independent of p and n. Combining the estimates

from (4.3.29), (4.3.37) and (4.3.41) gives

P ′(x)(x− x) ≥ C(p2(x− x0)2m1 + n2(x− x0)2m2)

for |x| ≤ 2ε for a constant C > 0 independent of p and n.

Proof of Lemma 4.3.18. Recall P (x) = p2(x− ε)2m1 + n2(x+ ε)2m2 . Let m = min(m1,m2).

Using the Taylor approximation theorem gives

P ′(x)(x− x0) = [P ′(x0) + P ′′(x̃)(x− x0)](x− x0), for x̃ between x0 and x

= [2m1(2m1 − 1)p2(x̃− ε)2m1−2 + 2m2(2m2 − 1)n2(x̃+ ε)2m2−2](x− x0)2

≥ 2m(2m− 1) min{n2, p2}[(x̃− ε)2m1−2 + (x̃+ ε)2m2−2](x− x0)2

≥ 2m(2m− 1) min{n2, p2}min{ε2m1−2, ε2m2−2}(x− x0)2

= Cε,m1,m2 min{n2, p2}(x− x0)2

for a positive constant Cε,m1,m2 independent of p and n.
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4.3.5 Summary of local smoothing estimates

Piecing together the estimates we get perfect local smoothing in the x-direction. Fur-

thermore we get perfect local smoothing away from a neighborhood of [−ε, ε] in the θ+, θ−

directions. Combining the estimates in (4.3.13), (4.3.14), and (4.3.16) gives Lemma 4.3.42.

Lemma 4.3.42 (Local Smoothing away from trapping). For any δ > 0

∫ T

0

||〈x〉−3/2∂xu||2L2 + ||〈x〉−3/2χδ(x)∂θ+u||2L2 + ||〈x〉−3/2χδ(x)∂θ−u||2L2dt ≤ CT,δ,ε||u0||2H1/2

where χδ(x) is a cutoff function satisfying χδ(x) = 0 for x ∈ [−ε− δ, ε+ δ] and χδ(x) = 1 for

x /∈ [−ε− 2δ, ε+ 2δ]. The L2 and H1/2 norms are in the variables x, θ− and θ+.

What is shown is slightly stronger. It says that for each frequency up,n there is local

smoothing away from the critical point, xp,n, of the potential p2V+(x) + n2V−(x). Formally,

∫ T

0

||〈x〉−3/2∂xu||2L2(x,θ+,θ−)dt+
∞∑
p,n

[ ∫ T

0

||〈x〉−3/2−1(x− xp,n) min{p, n}up,n||2L2(x)dt

]

+
∞∑
p,n

[ ∫ T

0

||〈x〉−3/2−m1(x− xp,n)m1pup,n]||2L2(x) + ||〈x〉−3/2−m2(x− xp,n)m2nup,n||2L2(x)dt

]
≤ CT,ε,m||u0||2H1/2(x,θ+,θ−).

Now let m1 = m2. Ignoring the possible better estimates from the

∫ T

0

||〈x〉−3/2 min{p, n}(x− xp,n)u||2L2dt

we expect that due to the localizing term of (x− xp,n)m that

∫ T

0

||χ(x)pup,n||2L2 + ||χ(x)nup,n||2L2dt

≤CT (||〈p〉m/(m+1)u0,p,n||2L2 + ||〈n〉m/(m+1)u0,p,n||2L2 + ||u0,p,n||2H1/2) (4.3.43)
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to match with the estimate in [CW13] where χ(x) ∈ C∞c (R) with χ(x) ≡ 1 on [−ε, ε].

Set h−2 = p2 + n2 and ũp,n(x) = up,n(x+ xp,n). Then, ũp,n(x) solves

(Dt +D2
x + p2V+(x+ xp,n) + n2V−(x+ xp,n) + V1(x+ xp,n))ũp,n = 0.

Let Ṽp,n(x) = p2V+(x+ xp,n) + n2V−(x+ xp,n) and Ṽ1(x) = V1(x+ xp,n). We have Ṽ ′p,n(0) = 0

and Ṽ ′p,n(x) ≥ h−2x2m. Since this is just shifting up,n,

∞∑
p,n

[ ∫ T

0

||〈x〉−3/2∂xũp,n||2L2dt+

∫ T

0

||〈x〉−3/2−mpxmũp,n||2L2 + ||〈x〉−3/2−mnxmũp,n||2L2dt

]

+
∞∑
p,n

[ ∫ T

0

||〈x〉−3/2−1 min{p, n}xũp,n||2L2dt

]
≤ CT,ε,m||u0||2H1/2 .

Using the new notation (4.3.43) holds, if

∫ T

0

||χ(x)h−1ũp,n(x)||2L2dt ≤ CT (||〈h−1〉m/(m+1)up,n,0||2L2 + ||up,n,0||2H1/2) (4.3.44)

where χ(x) ∈ C∞c (R) with χ(x) ≡ 1 near x = 0. The key reason for this change is that it

allows us to consider p, n at the same time and makes the critical point for Ṽp,n at x = 0 for

all p, n. This means that when h→ 0 the critical point is fixed.

4.4 Estimating at the critical point

4.4.1 Low Frequency Estimate

We want to break up u into high and low angular frequency parts. The idea is that if

the angular frequency is low compared to the radial frequency, then we can estimate the

angular derivative by the radial derivative, which we have an estimate for, and an error term

which is estimated similar to the high frequency part. In this situation we have two angular

directions and both affect the nature of the trapping. This issue is one of the reasons to

consider h−2 = p2 + n2. If h is small, then the total angular frequency is large. Next, we
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will formalize the decomposition into high and low frequency parts and show that the high

frequency estimate bounds the low frequency estimate.

Define

uhi = ψ(hDx)ũ, ulo = (1− ψ(hDx))ũ

where ψ(r) ∈ C∞c (R) which is 1 for |r| ≤ ε′ and vanishes for |r| ≤ 2ε′ for ε′ > 0 small. Then,

(Dt +D2
x + Ṽp,n + Ṽ1)ulo = [D2

x + Ṽp,n + Ṽ1, (1− ψ)]ũ = [Ṽp,n + Ṽ1,−ψ]ũ = h−1L1(ũ).

(4.4.1)

Since Ṽp,n = O(h−2), when we take the commutator L1 is a pseudo-differential operator

(with parameter h) of order zero such that the support of the symbol of L1 is contained in

{ψ′(hξ) 6= 0} ⊂ {ε′ ≤ h|ξ| ≤ 2ε′}. Hence, |Dx| ∼ h−1 on the wavefront set of L1.

Now, we redo the positive commutator argument with a cutoff χ(x) with χ(x) ≡ 1 near

x = 0 and χ(x) = 0 away from x = 0 with χ1/2 still smooth. Let B = f(x)∂x, where

f(x) = arctan(x), and

G =

∫ T

0

〈χ[Dt +D2
x + Ṽp,n + Ṽ1, B]ulo, ulo〉dt. (4.4.2)

Then,

G =

∫ T

0

〈χ(−2〈x〉−2∂2
x − Ṽ ′p,nf(x)− Ṽ ′1f(x))ulo, ulo〉dt+

∫ T

0

〈−χf ′′(x)∂xulo, ulo〉dt

≤
∫ T

0

〈χ(−2〈x〉−2∂2
x − Ṽ ′p,nf(x)− Ṽ ′1f(x))ulo, ulo〉dt+ CT ||ulo||2H1/2 (4.4.3)

for a constant CT > 0 dependent on T . The second line in (4.4.3) follows from the esti-

mate (3.2.7). Recall that arctan(x) and Ṽ ′p,n have opposite signs, so −χ arctan(x)Ṽ ′p,n ≥ 0.
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Additionally, |χṼ ′f(x)| ≤ C for some constant C independent of p and n. Hence,

∫ T

0

〈χ(−2〈x〉−2∂2
x − Ṽ ′p,nf(x)− χṼ ′1f(x))ulo, ulo〉dt

≥
∫ T

0

〈−2χ〈x〉−2∂2
xulo, ulo〉dt− CT ||u0||2L2 (4.4.4)

for a constant CT independent of p and n, but dependent on T. On the microsupport of ulo,

|1/h| . |Dx|. The G̊arding inequality implies that there is some C,C ′ > 0 such that

〈h−2χulo, ulo〉 ≤ −C〈χ〈x〉−2∂2
xulo, ulo〉+ C ′||ulo||2H1/2(X). (4.4.5)

Hence,

∫ T

0

〈h−2χulo,ulo〉dt ≤ −
∫ T

0

C〈χ〈x〉−2∂2
xulo, ulo〉dt+ C ′||ulo||2H1/2(X)

≤ C

∫ T

0

〈χ(−2〈x〉−2∂2
x − Ṽ ′p,nf(x)− Ṽ ′1f(x))ulo, ulo〉dt+ CT ||ulo||2H1/2(X)

= C

∫ T

0

〈χ[Dt +D2
x + Ṽp,n + Ṽ1, B]ulo, ulo〉dt+ CT ||u0||2H1/2(X).

The first line above follows from (4.4.5), the second line follows from (4.4.4), and the last line

follows from (4.4.3). Rearranging gives,

∫ T

0

〈h−1χulo, h
−1ulo〉dt ≤ CT ||u0||2H1/2 + C

∣∣∣∣ ∫ T

0

〈χ[Dt +D2
x + Ṽp,n + Ṽ1, B]ulo, ulo〉dt

∣∣∣∣.
Next we unpack the commutator in G another way. Recall,

G =

∫ T

0

〈χ(Dt +D2
x + Ṽp,n + Ṽ1)Bulo, ulo〉dt−

∫ T

0

〈χB(Dt +D2
x + Ṽp,n + Ṽ1)ulo, ulo〉dt

:= G1 +G2.
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Integrating by parts with the Dt and D2
x term in G1 gives

|G1| ≤
∣∣∣∣ ∫ T

0

〈χBulo, (Dt +D2
x + Ṽp,n + Ṽ1)ulo〉dt

∣∣∣∣+ 2

∣∣∣∣ ∫ T

0

〈Bulo, χ′∂xulo〉dt
∣∣∣∣

+

∣∣∣∣ ∫ T

0

〈Bulo, χ′′ulo〉dt
∣∣∣∣+

∣∣∣∣〈Bulo, ulo〉|T0 ∣∣∣∣.
Integrating by parts with B in G2 gives

|G2| ≤
∣∣∣∣ ∫ T

0

〈(Dt +D2
x + Ṽp,n + Ṽ1)ulo, (χf(x))′ulo〉dt

∣∣∣∣
+

∣∣∣∣ ∫ T

0

〈χBulo, (Dt +D2
x + Ṽp,n + Ṽ1)ulo〉dt

∣∣∣∣.
Combining the estimates for G1 and G2 gives

|G| ≤2

∣∣∣∣ ∫ T

0

〈χBulo, (Dt +D2
x + Ṽp,n + Ṽ1)ulo〉dt

∣∣∣∣+ 2

∣∣∣∣ ∫ T

0

〈Bulo, χ′∂xulo〉dt
∣∣∣∣+

∣∣∣∣〈Bulo, ulo〉|T0 ∣∣∣∣
+

∣∣∣∣ ∫ T

0

〈Bulo, χ′′ulo〉dt
∣∣∣∣+

∣∣∣∣ ∫ T

0

〈(Dt +D2
x + Ṽp,n + Ṽ1)ulo, (χf(x))′ulo〉dt

∣∣∣∣.
Recall that B = arctan(x)∂x. Since arctan(x) is bounded, χ′(x) is bounded, and there is

perfect local smoothing in the x-direction by Lemma 4.3.42,

∣∣∣∣ ∫ T

0

〈Bulo, 2χ′∂xulo〉dt
∣∣∣∣ ≤ C

∫ T

0

∫
R
|〈x〉−3/2∂xũ|2dxdt ≤ CT ||u0||2H1/2 . (4.4.6)

Since χ′′, arctan(x) are bounded, using energy estimates and (4.4.6) gives

∣∣∣∣ ∫ T

0

〈Bulo, 2χ′∂xulo〉dt
∣∣∣∣+

∣∣∣∣ ∫ T

0

∫
R
〈Bulo, χ′′ulo〉dt

∣∣∣∣ ≤ CT ||u0||2H1/2 .

Next, recall that (Dt + D2
x + Ṽ )ulo = h−1L1(ũ). Let ψ̃ be a smooth, even, compactly

supported bump function with ψ̃(s) ≡ 1 on supp (ψ).
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ψ

1− ψ

ψ̃

Figure 4.2: Comparing ψ, 1− ψ and ψ̃

The idea is that supp (ψ′) ⊆ supp (ψ) ⊆ {ξ ∈ R|ψ̃(ξ) ≡ 1}. This implies that

L1ψ̃(hDx) = L1 +O(h∞).

Let χ̃ be a smooth compactly supported function such that χ̃(s) ≡ 1 on supp (χ). This

construction is similar to ψ̃ so that supp (χ′) ⊆ supp (χ) ⊆ {x ∈ R|χ̃(x) ≡ 1}.

Hence,

∣∣∣∣ ∫ T

0

〈h−1L1ulo,(χ arctan(x))′ulo〉dt
∣∣∣∣

=

∣∣∣∣ ∫ T

0

〈h−1L1ψ̃ulo, (χ arctan(x))′ulo〉dt
∣∣∣∣+O(h∞)||u0||2H1/2

=

∣∣∣∣ ∫ T

0

〈h−1χ̃L1ψ̃ulo, (χ arctan(x))′ulo〉dt
∣∣∣∣+O(h∞)||u0||2H1/2

≤ C

∫ T

0

||h−1χ̃L1ψ̃ulo||2dt+ C

∫ T

0

||(χ arctan(x))′ulo||2dt+ CT ||u0||2H1/2

≤ C

∫ T

0

||h−1χ̃ψ̃ũ||2dt+ CT ||u0||2H1/2 .

The estimate in the last line follows because 0 ≤ ψ̃(1 − ψ) ≤ ψ̃, arctan(x), arctan′(x) are
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bounded, and that supp (χ) ⊂ {χ̃ ≡ 1}. Combining the estimates gives,

∫ T

0

〈h−2χulo, ulo〉dt ≤ CT ||u0||2H1/2 + C

∣∣∣∣ ∫ T

0

〈χ[Dt +D2
x + Ṽp,n + Ṽ1, B]ulo, ulo〉dt

∣∣∣∣
≤ CT ||u0||2H1/2 + C

∣∣∣∣ ∫ T

0

〈χBulo, h−1L1(ũ)〉dt
∣∣∣∣+ C

∫ T

0

||h−1χ̃ψ̃ũ||2dt

≤ CT ||u0||2H1/2 + C

∣∣∣∣ ∫ T

0

〈χBulo, h−1χ̃L1ψ̃(ũ)〉dt
∣∣∣∣+ C

∫ T

0

||h−1χ̃ψ̃ũ||2dt

≤ CT ||u0||2H1/2 + C

∫ T

0

||h−1χ̃ψ̃(ũ)||2dt+ C

∫ T

0

||χBulo||2dt

for constants C,CT > 0. Note that

∫ T

0

||χBulo||2dt ≤ CT ||u0||2H1/2

for some constant CT by Lemma 4.3.42 so that,

∫ T

0

〈h−2χulo, ulo〉dt ≤ CT ||u0||2H1/2 + C

∫ T

0

||h−1χ̃ψ̃ũ||2dt.

Since uhi = ψũ, we have

||h−1χ1/2uhi||2L2 ≤ ||h−1χ̃uhi||2L2 ≤ ||h−1χ̃ψ̃ũ||2L2 +O(1)||u||2L2 .

That means ∫ T

0

||h−1χ1/2uhi||2dt ≤ C

∫ T

0

||h−1χ̃ψ̃ũ||2dt+ CT ||u0||2H1/2 .

This implies that if

∫ T

0

||h−1χ̃ψ̃ũ||2dt ≤ C

∫ T

0

||h−m/(m+1)ũ||2L2dt+ CT ||u0||2H1/2 , (4.4.7)

then we can control the high and low frequency parts and get the necessary estimate.
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4.4.2 High Frequency Estimate

We will use the FF ∗ argument employed in [CW13] and [CM14]. For this section we will

remove the tilde notation on χ, ψ, u, V and V1 for convenience. We are considering functions

χ(x) supported near x = 0 and ψ(hDx) micro-supported near 0. Let F (t) be defined by

F (t)f(x) = χ(x)ψ(hDx)h
−re−it(D

2
x+V+V1)f(x)

where e−it(D
2
x+V+V1) is the Schrödinger propagator. We want to show that for some r we have

a mapping F : L2
x → L2([0, T ])L2

x, since then

||hr−1F (t)u0||L2([0,T ]);L2
x
≤ C||hr−1u0||L2

gives (4.4.7) for r = 1/m+ 1. We have such a mapping if and only if FF ∗ : L2([0, T ])L2
x →

L2([0, T ])L2
x. Computing we get that

FF ∗f(x, t) = χ(x)ψ(hDx)h
−2r

∫ T

0

ei(t−s)(D
2
x+V+V1)ψ(hDx)χ(x)f(x, s)ds

and need to show that ||FF ∗f ||L2L2 ≤ C||f ||L2L2 . Next let FF ∗f(x, t) = χψ(v1 + v2) where

v1 = h−2r

∫ t

0

ei(t−s)(D
2
x+V+V1)ψ(hDx)χ(x)f(x, s)ds,

and

v2 = h−2r

∫ T

t

ei(t−s)(D
2
x+V+V1)ψ(hDx)χ(x)f(x, s)ds,

so that

(Dt +D2
x + V + V1)vj = ±ih−2rψχf.
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Then it is sufficient to estimate

||χψvj||L2L2 ≤ C||f ||L2L2 .

Taking the Fourier transform in time and using Plancherel’s theorem, we have that it is

sufficient to estimate

||χψv̂j||L2L2 ≤ C||f̂ ||L2L2 .

This is the same as estimating

||χψh−2r(τ ± i0 +D2
x + V + V1)−1ψχ||L2

x→L2
x
≤ C. (4.4.8)

for C independent of τ . Hence, we get the desired result if we can show (4.4.8). Let −z = τh2,

then (4.4.8) is equivalent to

||χ(x)ψ(hDx)(−z ± i0 + (hDx)
2 + h2V + h2V1)−1ψ(hDx)χ(x)||L2→L2 ≤ Ch−2(1−r). (4.4.9)

For convenience, let

Q = (hDx)
2 + h2V + h2V1.

Remark 4.4.10. From Section 3.3 we would expect the estimate to hold for r = 1/(m+ 1)

in general. Everything up until this point holds for any integer m ≥ 2.

Now, we will consider the case m = 2 and r = 1/3. If we can show for h, δ > 0 sufficiently

small that for ϕ ∈ S(Rn) with compact support in {|(x, ξ)| ≤ δ)}

||(Q− z)ϕwu||L2 ≥ Ch4/3||ϕwu||L2 , z ∈ [M̃ − δ, M̃ + δ] (4.4.11)

for a constant C > 0, then we have (4.4.9). Instead we will prove

||(Q1 − z)ϕwu||L2 ≥ Ch4/3||ϕwu||L2 (4.4.12)
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for

Q1 = (hDx)
2 + h2V, (4.4.13)

but this implies (4.4.11). Note that V1 = O(1), h2V1 = O(h2). If (4.4.12) holds, then

||(Q− z)ϕwu||L2 ≥ ||(Q1 − z)ϕwu||L2 −O(h2)||ϕwu||L2 ≥ Ch4/3||ϕwu||L2

showing (4.4.11). We will get (4.4.12) by computing the commutator, |〈[Q1 − z, aw]v, v〉| for

an appropriate symbol a. This is where we will have to use Lemma 2.3.24 and specifically

equation (2.3.25). In the following sections we define the symbol a to give the right properties

and then calculate the terms in the commutator using Lemma 2.3.24.

Remark 4.4.14. Away from the microlocal resolvent estimate in (4.4.11), Q = q̃w for a non-

trapping symbol q̃. The gluing technique from [Chr18] combined with (4.4.11) give Theorem

4.2.2

4.4.3 Defining the Commutant

For this section assume that |p| ≥ |n| > 0 and h−2 = p2 + n2. The situation where

|n| ≥ |p| > 0 will follow similarly. We will also introduce a second parameter h̃ such that

h̃ ≥ h. When n = 0 we then only have a single term affecting the potential so we can use

the estimates from [CW13]. Furthermore, we will consider case the where m = 2 so that

−V ′(x) = E1x− E2x
2 + E3x

3. We will give what E1, E2, and E3 are later. We will also be

using the change of variables,

X =
( h̃
h

)1/3

x, Ξ =
( h̃
h

)2/3

ξ.

We want to estimate the symbol {q, a} where q = ξ2 + h2V (x) and

a = Λ

(( h̃
h

)1/3

x

)
Λ

(( h̃
h

)2/3

ξ

)
χ2(x)χ2(ξ) = Λ(X)Λ(Ξ)χ2(x)χ2(ξ) (4.4.15)
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where

Λ(s) =

∫ s

0

λ(x)dx

such that

λ(x) =


1, |x| < ελ

Cελ
|x|3/2 , |x| > 2ελ

λ(x) is even, λ′(x) ≤ 0 for x ≥ 0, λ′(x) ≥ 0 for x ≤ 0, Cελ is chosen so that λ is smooth,

and 0 < χ2(x) ≤ 1 is smooth cutoff near 0. Note Λ(x) and all of its derivatives are bounded.

Furthermore,

|Λ′′′(x)| ≤ C ′′ελΛ′(x)

for some constant C ′′ελ > 0 due to the construction of λ. Additionally, Λ′′′(x) = 0 for |x| < ελ.

4.4.4 Estimating the first term in the Commutator

Let B denote the blowdown map

(x, ξ) = B (X,Ξ) =

((h
h̃

)1/3

X,
(h
h̃

)2/3

Ξ

)

and let Th,h̃ denote the unitary operator

Th,h̃u(X) =
(h
h̃

)1/6

u

((h
h̃

)1/3

X

)

so that if g ∈ Sk,m,m̃1/3,2/3, then
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〈Op h(g(x, ξ))u(x), u(x)〉

=

∫
1

2πh

∫ ∫
e
i
h

(x−y)ξg
(x+ y

2
, ξ
)
u(y)dydξū(x)dx

=

∫
1

2πh

∫ ∫
e
i
h

((h
h̃

)1/3X−y)ξg

(
(h
h̃
)1/3X + y

2
, ξ

)
u(y)dydξū

((h
h̃

)1/3

X

)(h
h̃

)1/3

dX

=

∫
h̃−1/6

2πh5/6

∫ ∫
e
i
h̃

(X−Y )Ξg

(
(h
h̃
)1/3(X + Y )

2
,
(h
h̃

)2/3

Ξ

)
u

((h
h̃

)1/3

Y

)
h

h̃
dY dΞTh,h̃u(X)dX

=

∫
1

2πh̃

∫ ∫
e
i
h̃

(X−Y )Ξg

(
(h
h̃
)1/3(X + Y )

2
,
(h
h̃

)2/3

Ξ

)
Th,h̃u(Y )dY dΞTh,h̃u(X)dX

=

∫
1

2πh̃

∫ ∫
e
i
h̃

(X−Y )Ξ(g ◦ B )

(
(X + Y )

2
,Ξ

)
Th,h̃u(Y )dY dΞTh,h̃u(X)dX

= 〈Op h̃(g ◦ B )(X,Ξ)(Th,h̃u)(X), Th,h̃u(X)〉.

The first term in [Q,A] is given by hOp w
h {q, a} since we are using the h-Weyl quantization.

The estimate we want in the end is of the form

h〈Op w
h ({q, a})u, u〉 ≥ Ch4/3h̃||u||2L2 .

After estimating this term we will also have to deal with the other terms from the commutator.

To estimate this first term we will use the following process of estimates,

h〈Op w
h ({q, a})(x, ξ)u(x), u(x)〉 = h〈Op w

h̃
({q, a} ◦ B )(X,Ξ)Th,h̃u(X), Th,h̃u(X)〉

= h(
h

h̃
)1/3〈Op w

h̃
(g1)(X,Ξ)Th,h̃u(X), Th,h̃u(X)〉 − Error Terms (4.4.16)

≥ h4/3h̃||u||2L2 − Error Terms (4.4.17)

≥ Ch4/3h̃||u||L2s2.

Remark 4.4.18. These estimates are not exact and avoid details that will be cleared up in

the calculations. However, it gives the idea of how we will estimate the first term in the
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commutator.

The estimate in (4.4.16) will come from calculating {q, a} ◦ B and dealing with terms

supported away from the critical point. The main work of the section is the estimate in

(4.4.17). This will require us to carefully calculate a lower bound for g1. Once, we get the

correct lower bound we can use the process from [CW13] to get the estimate.

To start we will compute the Poisson bracket,

h{q, a}(x, ξ) = h
(

2ξΛ
(
Ξ
)[
h−1/3h̃−1/3λ

(
X
)]
− h2V ′(x)Λ

(
X
)[
h−2/3h̃2/3λ

(
Ξ
)])

χ2(x)χ2(ξ)+r

=

(
h2/3h̃1/32ξΛ

(
Ξ
)
λ
(
X
)
− h1/3h̃2/3h2V ′(x)Λ

(
X
)
λ
(
Ξ
))
χ2(x)χ2(ξ) + r

= gχ2(x)χ2(ξ) + r. (4.4.19)

The r term contains the derivatives of χ2 which are supported away from the critical point.

Recall that V ′p,n(x) = −4p2(x− ε)3 − 4n2(x+ ε)3, so

−V ′p,n(x)(x− x0) = (4p2(x− ε)3 + 4n2(x+ ε)3)(x− x0) ≥ 0

from Proposition 4.3.15. This implies that −V ′(x)Λ(X) ≥ 0, however we will need to show

better bounds. Now, that we calculated {q, a} and defined g we want to prove the following

estimate,

Lemma 4.4.20. Let h4/3h̃−1/3g1(X,Ξ;h) = (g ◦ B )(X,Ξ;h) = g(x, ξ;h) where g is defined

in (4.4.19). Then,

g1(X,Ξ;h) ≥


Cg(Ξ

2 +X4), |X| ≤ ελ, |Ξ| ≤ ελ

Cg, otherwise

(4.4.21)

where Cg > 0 independent of h and h̃.

Now to prove the lemma we have to look at what happens to g in the different cases for
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Λ

((
h̃
h

)2/3

ξ

)
and Λ

((
h̃
h

)1/3

x

)
. Hence, we have 4 different cases we need to look at.

1. |x| ≤ ελ

(
h
h̃

)1/3

and |ξ| ≤ ελ

(
h
h̃

)2/3

2. |x| ≤ ελ

(
h
h̃

)1/3

and |ξ| > ελ

(
h
h̃

)2/3

3. |x| > ελ

(
h
h̃

)1/3

and |ξ| ≤ ελ

(
h
h̃

)2/3

4. |x| > ελ

(
h
h̃

)1/3

and |ξ| > ελ

(
h
h̃

)2/3

After the blowdown map is applied this will give use the following regions for g ◦ B

1. |X| ≤ ελ and |Ξ| ≤ ελ

2. |X| ≤ ελ and |Ξ| > ελ

3. |X| > ελ and |Ξ| ≤ ελ

4. |X| > ελ and |Ξ| > ελ

This is why the blowdown map is used. It allows us to switch from h-dependent cases to non

h-dependent cases. To handle these cases we will need to provide estimates on −V ′(x).
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Estimating −V ′(x)

In this section we will need to find the critical point for V ′(x). The critical point xp,n is

given by,

0 = −4p2(xp,n − ε)3 − 4n2(xp,n + ε)3

n2(xp,n + ε)3 = −p2(xp,n − ε)3

3

√
−n2

p2
=

(xp,n − ε)
(xp,n + ε)(

1− 3

√
−n2

p2

)
xp,n = ε

(
1 + 3

√
−n2

p2

)

xp,n = ε

(1 + 3

√
−n2

p2

1− 3

√
−n2

p2

)

xp,n = ε

(
p2/3 − n2/3

p2/3 + n2/3

)

Before shifting the function −V (x) we have,

E1 =
2V ′′(xp,n)

2!
= 48ε2n

2p4/3 + p2n4/3

(p2/3 + n2/3)2
(4.4.22)

−E2 =
3V ′′′(xp,n)

3!
= −24ε

−n2p2/3 + p2n2/3

p2/3 + n2/3
(4.4.23)

E3 =
4V ′′′′(xp,n)

4!
= 4(p2 + n2). (4.4.24)

The choice of E2 is so that E2 ≥ 0 when |p| ≥ |n| > 0. We can use E1, E2 and E3 and the

fact that −Ṽ ′(0) = 0 to define −Ṽ ′(x). We are also going to drop the p, n and tilde notation

for the shifted V function for convenience. This gives

− V ′(x) = E1x− E2x
2 + E3x

3. (4.4.25)

Recall that we are using h−2 = p2 + n2 and that E2 ≥ 0. We will want to prove the following
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lemma,

Lemma 4.4.26. Let |x| ≤ 2ε and −V ′(x) = E1x− E2x
2 + E3x

3 where E1, E2 and E3 are

defined in (4.4.22), (4.4.23), and (4.4.24) respectively. We have the following estimate,

−h2V ′(x)Λ(X) ≥ h2

(
1

10
E1xΛ(X) +

1

10
E3x

3Λ(X)

)
=

2

5

(
E1

E3

xΛ(X) + x3Λ(X)

)
. (4.4.27)

Remark 4.4.28. The choice of 1
10

is not optimal, but is sufficient for the estimates needed

in this thesis.

Proof of Lemma 4.4.26. We want to show that

−V ′(x)Λ(X) = (E1 − E2x+ E3x
2)xΛ(X) ≥ kE1xΛ(X) + k̃E3x

3Λ(X)

for some constants k, k̃ > 0. This will hold if

f̃(x) := ((1− k)E1 − E2x+ E3(1− k̃)x2) ≥ 0,

since xΛ(X) ≥ 0. Now f̃(x) is a quadratic function in x, so we will show that for k, k̃

sufficiently small that the minimum of f̃(x) ≥ 0 for all |p| ≥ |n| > 0. First note that the

minimum occurs at E2/((1− k̃)2E3). The minimum is then,

f̃

(
E2

(1− k̃)2E3

)
= (1− k)E1 −

E2
2

4(1− k̃)E3

= (1− k)48ε2n
2p4/3 + p2n4/3

(p2/3 + n2/3)2
− 242ε2(−n2p2/3 + p2n2/3)2

16(1− k̃)(p2/3 + n2/3)2(p2 + n2)

=
24ε2

(p2/3 + n2/3)2

(
2(1− k)(n2p4/3 + p2n4/3)−

(
3(p2n2/3 − n2p2/3)2

2(1− k̃)(p2 + n2)

))
.

(4.4.29)

Let d = n
p

or equivalently n = dp. Since |p| ≥ |n| > 0, we have that −1 ≤ d ≤ 1. Substituting
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n = dp into (4.4.29) to get rid of n gives

f

(
E2

(1− k̃)2E3

)
=

24ε

(1 + d2/3)2p4/3

(
2(1− k)(d4/3 + d2)p10/3 −

(
3(d2/3 − d2)2p16/3

2(1− k̃)(1 + d2)p2

))

=
24εd4/3p2

(1 + d2/3)2

(
2(1− k)(1 + d2/3)−

(
3

2(1− k̃)

)(
(1− d4/3)2

(1 + d2)

))
. (4.4.30)

Notice that

24εd4/3p2

(1 + d2/3)2
≥ 0

for all d. This implies that

(
2(1− k)(1 + d2/3)−

(
3

2(1− k̃)

)(
(1− d4/3)2

(1 + d2)

))
≥ 0

for all −1 ≤ d ≤ 1, if

2(1− k)− 3

2(1− k̃)
≥ 0.

Taking k = k̃ = 1/10 gives 2(1− k)− 3
2(1−k̃)

= 18/10− 30/18 = 2/15 > 0. Hence, f̃(x) ≥ 0

for all x and |p| ≥ |n| > 0. This proves Lemma 4.4.26.

Next we want to estimate g ◦ B using the lemma. This idea follows the “blow-down” map

used in [CW13] which is described in section 3. We will do this by breaking up into the 4

cases.

Remark 4.4.31. In [CW13] and [CM14], estimates are done initially in the X,Ξ variables

and then B −1 is used to get back to the initial symbol in the x and ξ variables. We will avoid

this method, since it was easier to get inequalities initially in the x and ξ variables and then

use B .
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Case 1

Let |x| ≤ ελ

(
h
h̃

)1/3

and |ξ| ≤ ελ

(
h
h̃

)2/3

. In this case

g = h2/3h̃1/32ξΛ

(( h̃
h

)2/3

ξ

)
λ

(( h̃
h

)1/3

x

)
− h1/3h̃2/3h2V ′(x)Λ

(( h̃
h

)1/3

x

)
λ

(( h̃
h

)2/3

ξ

)
= h2/3h̃1/32ξ

( h̃
h

)2/3

ξ − h1/3h̃2/3h2V ′(x)
( h̃
h

)1/3

x

≥ h̃

(
2ξ2 +

2E1

5E3

x2 +
2

5
x4

)

where we use (4.4.26) to get the last inequality. After applying the blowdown map we get,

g ◦ B (X,Ξ) ≥ 2h4/3h̃−1/3Ξ2 +
2E1

5E3

h2/3h̃1/3X2 +
2

5
h4/3h̃−1/3X4

≥ h4/3h̃−1/3

(
2Ξ2 +

2

5
X4

)
(4.4.32)

for |X| ≤ ελ and |Ξ| ≤ ελ.

Case 2

When |x| ≤ ελ

(
h
h̃

)1/3

and |ξ| > ελ

(
h
h̃

)2/3

,

g ≥ 2h2/3h̃1/3

∣∣∣∣ξΛ((hh̃
)2/3

ξ

)∣∣∣∣ ≥ 2h2/3h̃1/3

(
ελ
h2/3

h̃2/3

)∣∣Λ(Ξ)
∣∣ ≥ 2ε2

λh
4/3h̃−1/3.

After applying the blowdown map, we get

g ◦ B (X,Ξ) ≥ 2ε2
λh

4/3h̃−1/3 (4.4.33)

for |X| ≤ ελ and |Ξ| > ελ.
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Case 3

When |x| ≥ ελ

(
h
h̃

)1/3

and |ξ| ≤ ελ

(
h
h̃

)2/3

,

g ≥ h1/3h̃2/3(h2V ′(x))Λ

(( h̃
h

)1/3

x

)
.

By (4.4.26),

g ≥ h1/3h̃2/3

(
2E1

5E3

x+
2

5
x3

)
Λ

(( h̃
h

)1/3

x

)
. (4.4.34)

Using the bounds on |Λ(X)|, |x| and the fact x and Λ(X) have the same signs we get that

g ≥ 2

5
h4/3h̃−1/3ε3

λ

∣∣∣∣Λ
(( h̃

h

)1/3

x

)∣∣∣∣∣ ≥ 2

5
ε4
λh

4/3h̃−1/3.

After applying the blowdown map, we get

g ◦ B (X,Ξ) ≥ 2

5
ε4
λh

4/3h̃−1/3 (4.4.35)

for |X| ≥ ελ and |Ξ| ≤ ελ.

Case 4

When |x| ≥ ελ

(
h
h̃

)1/3

and |ξ| > ελ

(
h
h̃

)2/3

,

g =

(
2ξh2/3h̃1/3ξΛ

(( h̃
h

)2/3
ξ
)
λ
(( h̃
h

)1/3
x
)
− h̃2/3h1/3(h2V ′(x))Λ

(( h̃
h

)1/3
x
)
λ
(( h̃
h

)2/3
ξ
))

≥

(
2h2/3h̃1/3Cελελ|ξ|
|
(
h̃
h

)1/3
x|3/2

+
h̃2/3h1/3|h2V ′(x)|Cελελ

|
(
h̃
h

)2/3
ξ|3/2

)
.
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Using Lemma 4.4.26 gives

g ◦ B (X,Ξ) ≥

(
2h4/3h̃−1/3Cελελ|Ξ|

|X|3/2
+

2Cελελ
5

h4/3h̃−1/3|X|3

|Ξ|3/2

)
. (4.4.36)

First, consider the case when |Ξ|
|X|3/2 ≥ 1. In this case

g ◦ B (X,Ξ) ≥

(
2h4/3h̃−1/3Cελελ|Ξ|

|X|3/2
+

2Cελελ
5

h4/3h̃−1/3|X|3

|Ξ|3/2

)

≥ 2Cελελh
4/3h̃−1/3.

Now, consider the case when |X|3/2
|Ξ| ≥ 1. In this case

g ◦ B (X,Ξ) ≥

(
2h4/3h̃−1/3Cελελ|Ξ|

|X|3/2
+

2Cελελ
5

h4/3h̃−1/3|X|3

|Ξ|3/2

)

≥ 2Cελελ
5

h4/3h̃−1/3. (4.4.37)

Using both estimates and applying the blowdown map we get,

g ◦ B (X,Ξ) ≥ C4h
4/3h̃−1/3

for |X| ≥ ελ and |Ξ| > ελ, where C4 is a positive constant independent of h.

Combining Estimates

Now, define g1 such that g(x, ξ) = (g ◦ B )(X,Ξ) = h4/3h̃−1/3g1(X,Ξ). Then, combining

the estimates from (4.4.32), (4.4.33), (4.4.35), and (4.4.37) we get

g1(X,Ξ;h) ≥


Cg(Ξ

2 +X4), |X| ≤ ελ and |Ξ| ≤ ελ

Cg, else

(4.4.38)
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for a positive Cg > 0 independent of h and h̃. Now, that we have the bounds lower bound of

g1 we can use Lemma 2.5 and Lemma 2.6 from [CW13].

We will need the following lemma for the final estimate,

Lemma 4.4.39. Let r̃ = OS1/3,2/3(h̃5/3). For h̃ > 0 sufficiently small, there exists c > 0 such

that

〈Op w
h̃

(g1(1 + r̃))u, u〉 ≥ ch̃4/3||u||2L2

uniformly as h ↓ 0.

The addition of the r̃ term will be needed to control the third order term.

Proof. Note that r̃ = OS1/3,2/3(h̃5/3), so take h̃ sufficiently small so that 1 + r̃ ≥ cr > 0 for

some constant cr. Using that 1+ r̃ ≥ cr > 0 and the estimate in (4.4.38), gives that g1(1+ r̃) is

elliptic when |X| > ελ or |Ξ| > ελ. This implies that there is a constant C > 0 independent of

h̃ > 0 such that if 〈Opw
h̃

(g1(1+ r̃))u, u〉 ≤ C||u||2L2 , u has semiclassical wavefront set contained

in the set S = {(X,Ξ) : |X| ≤ ελ/2 and |Ξ| ≤ ελ/2}. On S, g1(1 + r̃) = (Ξ2 +X4)K2
g for a

strictly positive symbol Kg. Note that the Weyl quantization has the convenient feature that

〈Op w
h̃

((Ξ2 +X4)K2
g )u, u〉 = 〈Op w

h̃
(Kg)

∗(h̃2D2
X +X4)Op w

h̃
(Kg)u, u〉+O(h̃2).

Additionally, as shown in Lemma A.2 of [CW13]

〈(h̃2D2
x +X4)u, u〉 ≥ h̃4/3||u||2L2 .

Suppose u has semiclassical wavefront set contained in the set S = {(X,Ξ) : |X| ≤

ελ/2 and |Ξ| ≤ ελ/2}. Let ϕ ∈ C∞c (R2) be a cutoff function such that ϕ ≡ 1 on S and
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ϕ = 0 when |X| > ελ or |Ξ| > ελ. Then,

〈Op w
h̃

(g1(1 + r̃))u, u〉

=〈Op w
h̃

(g1(1 + r̃))ϕwu, ϕwu〉+ 〈Opw
h̃

(g1(1 + r̃))(1− ϕ)wu, (1− ϕ)wu〉

+ 〈Op w
h̃

(g1(1 + r̃))ϕwu, (1− ϕ)wu〉+ 〈Op w
h̃

(g1(1 + r̃))(1− ϕ)wu, ϕwu〉

=〈Op w
h̃

(Kg)
∗(h̃2D2

X +X4)Op w
h̃

(Kg)ϕ
wu, ϕwu〉+O(h̃2)||u||2L2 +O(h̃∞)||u||2L2

=〈(h̃2D2
X +X4)Op w

h̃
(Kg)ϕ

wu,Op w
h̃

(Kg)ϕ
wu〉+O(h̃2)||u||2L2 +O(h̃∞)||u||2L2

≥h̃4/3c1||Op w
h̃

(Kg)ϕ
wu||2L2 +O(h̃2)||u||2L2 +O(h̃∞)||u||2L2

≥h̃4/3c′1||ϕwu||2L2 +O(h̃2)||u||2L2 +O(h̃∞)||u||2L2

≥h̃4/3c′′1||u||2L2 +O(h̃2)||u||2L2 +O(h̃∞)||u||2L2

for strictly positive constants c1, c
′
1 and c′′1. We use the fact that u has semiclassical wavefront

set contained in S to go from lines two and three to line four. We use the fact that Kg is

strictly positive to go from line five to six. Additionally, we use that u has semiclassical

wavefront set contained in S and ϕ ≡ 1 on S to go from line six to seven. So, taking h̃

sufficiently small gives the desired result.

4.4.5 Estimating the third order term in the commutant

Due to using the Weyl calculus we only have odd ordered derivatives in the expansion of the

commutant. Furthermore, there are no mixed derivative terms since ∂x∂ξq = 0. Additionally

∂kξ q = 0 for k ≥ 3 and due to the construction of V, ∂kxq = 0 for k ≥ 4. This means that the

only additional term we need to estimate is the third order term given by,

h3∂3
xq∂

3
ξa = h3

((
h̃

h

)2

h2V ′′′(x)Λ′′′
(( h̃
h

)2/3
ξ
)

Λ
(( h̃
h

)1/3
x
)
χ2(x)χ2(ξ) + r2

)
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where r2 contains the terms with derivatives of χ2. We can estimate h3∂3
xq∂

3
ξa by estimating

e2(x, ξ) = −h3

((
h̃

h

)2

h2V ′′′(x)Λ′′′
(( h̃
h

)2/3
ξ
)

Λ
(( h̃
h

)1/3
x
))

. (4.4.40)

The goal for this section is the following lemma,

Lemma 4.4.41. For e2 as defined in (4.4.40) we have

|(e2 ◦ B )(X,Ξ)| ≤ Ce2h̃
4/3h4/3g1(X,Ξ) (4.4.42)

for a positive constant Ce2 > 0 independent of h and h̃.

Proof. Recall from the construction of Λ that for |s| < ελ, Λ′′′(s) = 0. This means we just

need show 4.4.42 when |Ξ| ≥ ελ. Recall from Lemma 4.4.26 that

− h2V ′(x)Λ(x) ≥ 2

5

(
E1

E3

xΛ(X) + x3Λ(X)

)
. (4.4.43)

Our goal will be to show that

∣∣∣∣∣h3

((
h̃

h

)2

h2V ′′′(x)Λ′′′
(( h̃
h

)2/3
ξ
)

Λ
(( h̃
h

)1/3
x
))∣∣∣∣∣ ≤ h̃4/3g (4.4.44)

where

g =

(
2h2/3h̃1/3ξΛ

(
Ξ
)
λ
(
X
)
− h1/3h̃2/3h2V ′(x)Λ

(
X
)
λ
(
Ξ
))
.

Noting that Λ′′′(Ξ) = 0 for |Ξ| ≤ ελ and using Lemma 4.4.26, (4.4.44) holds if

∣∣∣∣hh̃2(h2V ′′′(x))Λ′′′(Ξ)Λ(X)

∣∣∣∣ ≤ Kh̃4/3

(
h4/3h̃−1/3 + h1/3h̃2/3 2

5

(
E1

E3

xΛ(X) + x3Λ(X)

)
Λ′(Ξ)

)
.

From the calculations on h2V ′(x) we have

− h2V ′′′(x) = 24(x− E2/3E3). (4.4.45)
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Noting that |Λ′′′(X)| ≤ C ′′ελΛ′(X) implies that (4.4.42) holds if

∣∣∣∣24hh̃2

(
x− E2

3E3

)
Λ(X)

∣∣∣∣ ≤ Ce2h̃
4/3

(
h4/3h̃−1/3 + h1/3h̃2/3 2

5

(
E1

E3

xΛ(X) + x3Λ(X)

))
.

(4.4.46)

After the blowdown map, (4.4.46) holds if

24h4/3h̃5/3XΛ(X) +

∣∣∣∣24hh̃2 E2

3E3

Λ(X)

∣∣∣∣
≤ Ce2h̃

4/3

(
h4/3h̃−1/3 + h2/3h̃1/3 2

5

E1

E3

XΛ(X) + h4/3h̃−1/3 2

5
X3Λ(X)

)
.

(4.4.47)

We will first deal with the 24h4/3h̃5/3XΛ(X) term. If |X| ≤ ελ, then

24h4/3h̃5/3XΛ(X) ≤ 24h4/3h̃5/3ε2
λ. (4.4.48)

If |X| ≥ ελ, then

24h4/3h̃5/3XΛ(X) ≤ 24

ε2
λ

h4/3h̃5/3X3Λ(X). (4.4.49)

Combining (4.4.48) and (4.4.49) gives

24h4/3h̃5/3XΛ(X) ≤ C ′e2h̃
2(h4/3h̃−1/3 + h4/3h̃−1/3 2

5
X3Λ(X)) (4.4.50)

for a positive constant C ′e2 independent of h.

Now we will handle the

∣∣∣∣24hh̃2 E2

3E3
Λ(X)

∣∣∣∣ term. First note that |Λ(X)| ≤ |X|. If |8E2

3E3
X| ≤

h1/3, then ∣∣∣∣24hh̃2 E2

3E3

Λ(X)

∣∣∣∣ ≤ 24h4/3h̃2. (4.4.51)
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If |8E2

3E3
X| ≥ h1/3, then |X| ≥ h1/3 3E3

8E2
. Noting that XΛ(X) ≥ 0, gives

∣∣∣∣24hh̃2 E2

3E3

Λ(X)

∣∣∣∣ ≤ h2/3h̃2

(
8E2

3E3

)2

XΛ(X).

Notice that

h2/3h̃2

(
8E2

3E3

)2

XΛ(X) ≤ h̃4/3h2/3h̃1/3 2E1

5E2

XΛ(X),

if

h̃2−5/3

(
8E2

3E3

)2

≤ 2E1

5E3

.

This is equivalent to

2

5
E1 − h̃1/3 64E3

2

9E3

≥ 0.

Multiplying by 5/2 gives that we need

E1 − h̃1/3 160E2
2

9E3

≥ 0.

Recall from the proof of Lemma 4.4.26 that

(1− k)E1 −
E2

2

4(1− k̃)E3

≥ 0

for k = k̃ = 1
10
. Taking h̃ sufficiently small gives

h2/3h̃2

(
8E2

3E3

)2

XΛ(X) ≤ h̃4/3h2/3h̃1/3 2E1

5E3

XΛ(X). (4.4.52)

Combining the estimates in (4.4.51) and (4.4.52) gives

∣∣∣∣24hh̃2 E2

3E3

Λ(X)

∣∣∣∣ ≤ C ′′e2h̃
4/3

(
h4/3h̃−1/3 + h2/3h̃1/3 2

5

E1

E3

XΛ(X)

)
(4.4.53)

for a positive constant C ′′e2 independent of h.

98



Now combining (4.4.50) and (4.4.53) gives

|e2 ◦ B | ≤ 24h4/3h̃5/3XΛ(X) +

∣∣∣∣24hh̃2 E2

3E3

Λ(X)

∣∣∣∣
≤ (C ′e2 + C ′′e2)h̃

4/3

(
h4/3h̃−1/3 + h2/3h̃1/3 2

5

E1

E3

XΛ(X) + h4/3h̃−1/3 2

5
X3Λ(X)

)
≤ Ce2h̃

4/3h4/3g1

where Ce2 = C ′e2 + C ′′e2 > 0 and is independent of h.

Lemma 4.4.41 implies that

Op w
h̃

(g ◦ B ) + Op w
h̃

(e2 ◦ B ) = h4/3h̃−1/3Op w
h̃

(g1(1 + r̃)) (4.4.54)

where r̃ = OS1/3,2/3(h̃5/3).

4.4.6 Final estimate

We will use (4.4.54) and Lemma 4.4.39 to prove the following lemma,

Lemma 4.4.55. For δ > 0 sufficiently small and h > 0 sufficiently small, let ϕ ∈ S(R) have

compact support in {|(x, ξ)| ≤ δ}. Then there exists a C > 0 such that

||(Q1 − z)ϕwu|| ≥ Ch4/3||ϕwu||, z ∈ [M̃ − δ, M̃ + δ]. (4.4.56)

Proof. Let v = ϕwu for ϕ chosen with support inside the set where χ2(x)χ2(ξ) = 1. Thus r

and r2 are supported away from the support of ϕ. Recall that

〈Op w
h (s)u, u〉 = 〈Op w

h̃
(s ◦ B )(X,Ξ)Th,h̃u(X), Th,h̃u(X)〉 = 〈Op w

h̃
(s ◦ B )(X,Ξ)u(X), u(X)〉
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for s ∈ S1/3,2/3. Hence,

i〈[Q1 − z, aw]v, v〉 = h〈Op w
h ({q, a})v, v〉+ 〈Op w

h (e2)v, v〉+O(h∞)||v||2L2

= 〈Op w
h (g)v, v〉+ 〈Op w

h (e2)v, v〉+O(h∞)||v||2L2

= 〈Op w
h̃

(g ◦ B )v, v〉+ 〈Op w
h̃

(e2 ◦ B )v, v〉+O(h∞)||v||2L2

= h4/3h̃−1/3〈Op w
h̃

(g1(1 + r̃))v, v〉+O(h∞)||v||2L2 , by (4.4.54)

≥ Ch4/3h̃||v||2L2 , by Lemma 4.4.39

for h̃ sufficiently small. We are almost finished. Notice that

|a(x, ξ;h)| =

∣∣∣∣∣Λ
(( h̃

h

)1/3

x

)
Λ

(( h̃
h

)2/3

ξ

)
χ2(x)χ2(ξ)

∣∣∣∣∣ ≤ C

Hence,

|〈[Q1 − z, aw]v, v〉| ≤ ‖(Q1 − z)v‖L2 ‖awv‖L2 ≤ C‖(Q1 − z)v‖L2 ‖v‖L2 .

So for fixed h̃ > 0 sufficiently small,

‖(Q1 − z)v‖L2 ≥ Ch4/3‖v‖L2 .
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APPENDIX

A.1 Fourier Transform

In this section we will define the Fourier transform and semiclassical Fourier transform

and explain the useful properties.

Definition A.1.1. If ϕ ∈ S (Rn), then the Fourier transform of ϕ is

Fϕ(ξ) = ϕ̂(ξ) :=

∫
Rn
e−i〈x,ξ〉ϕ(x)dx.

The inverse Fourier transform of a function ϕ ∈ S (Rn) is given by

F−1ϕ(x) = ϕ̌(x) =
1

(2π)n

∫
Rn
ei〈x,ξ〉ϕ(ξ)dx.

Definition A.1.2. If ϕ ∈ S (Rn), then the semiclassical Fourier transform of ϕ is

Fhϕ(ξ) = ϕ̂(ξ) :=

∫
Rn
e−

i
h
〈x,ξ〉ϕ(x)dx.

The inverse semiclassical Fourier transform of a function ϕ ∈ S (Rn) is given by

F−1
h ϕ(x) = ϕ̌(x) =

1

(2πh)n

∫
Rn
e
i
h
〈x,ξ〉ϕ(ξ)dx.

The Fourier Transform has the following nice properties,

Theorem A.1.3. For ϕ ∈ S (Rn)

(i)

F−1
h Fhϕ(x) = ϕ(x)

(ii)

(hDξ)
α(Fhϕ) = Fh((−x)αϕ)
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(iii)

Fh((hDx)
αϕ) = ξαFhϕ

(iv)

||ϕ||2L2 =
1

(2πh)n
||Fhϕ||L2 .

A useful property of this is that,

(hDx)
αϕ = F−1

h (ξαFhϕ)(x). (A.1.4)

This allows the definition of Sobolev Spaces with non-integer values. Sobolev norms are

defined in the following way,

Definition A.1.5 (L2-based Sobolev Norm). Let k ∈ N. Then the Sobolev norm of a function

u on Rn is given by

||u||Hk :=

( ∑
|α|≤k

∫
Rn
|Dαu|2dx

)1/2

.

However, using the idea behind (A.1.4) and psuedo-differential operators and property

(iv) we can extend the idea of Sobolev norms to non-integer k.

Definition A.1.6 (Generalized Sobolev Norm). Let s ∈ R+. Then the Sobolev norm of a

function u on Rn is given by

||u||Hs :=

(
1

(2π)n

∫
Rn
〈ξ〉2s|Fu(ξ)|2dξ

)1/2

where 〈ξ〉2s = (1 + ξ2)s.

Remark A.1.7. Notice that there is a factor of 〈ξ〉2s →∞ as |ξ| → ∞, so high frequency

estimates (|ξ| large) are what determines the regularity.
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Theorem A.1.8 (Uncertainty Principle). We have

h

2
||f ||L2||Fhf ||L2 ≤ ||xjf ||L2||ξjFhf ||L2 .

The uncertainty principle implies that you cannot arbitrarily localize in phase space. This

is an important barrier to the local smoothing estimates of the Schrödinger Equation.

A.2 Stationary Phase

Theorem A.2.1 (Rapid Decay Lemma 3.10 in [Zwo12]). Given functions a ∈ C∞c (R), ϕ ∈

C∞(R) and h > 0 let

Ih = Ih(a, ϕ) :=

∫
R
e
iϕ
h adx.

If ϕ′(x) 6= 0 on supp (a), then

Ih = O(h∞) as h→ 0.

Proof. The proof is based on integrating by parts multiple times, so we will follow the proof

from [Zwo12] almost line for line. To prove the theorem we will need to show that for each

positive integer N , there is a CN such that |Ih| ≤ CNh
N for all 0 < h ≤ 1. Let

L :=
h

i

1

ϕ′
∂x.

Note that this is where we require that ϕ′(x) 6= 0, so that L is defined for all x ∈ supp (a). L

was constructed so that

Le
iϕ
h = e

iϕ
h .

This implies that applying L to e
iϕ
h returns e

iϕ
h so,

|Ih| =
∣∣∣∣ ∫

R
(LNe

iϕ
h )adx

∣∣∣∣ =

∣∣∣∣ ∫
R
e
iϕ
h (L∗)Nadx

∣∣∣∣
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where L∗ is the adjoint of L. Since a is smooth compactly supported and ϕ is smooth,

L∗a = −h
i
∂x(

a

ϕ′
)

is of size h. Hence, |Ih| ≤ CNh
N .

This theorem tells us that if the phase is not stationary, then we should expect rapid

decay as h→ 0. This is because the integral will oscillate rapidly producing cancellations in

the integral. If ϕ′ = 0 at a single point, then we should expect the integral to be determined

by the value at this point, since outside of this point the integral will be oscillating rapidly

and produce cancellations.

Theorem A.2.2. Let a ∈ C∞c (R). Suppose that x0 ∈ supp (a) and ϕ′(x0) = 0, ϕ′′(x0) 6= 0.

Additionally, suppose ϕ′(x) 6= 0 for all x ∈ supp (a) \ {x0}. Then,

∫
R
e
iϕ
h adx = (2πh)1/2|ϕ′′(x0)|−1/2e

iπ
4

sgn (ϕ′′(x0))e
iϕ(x0)
h a(x0) +O(h3/2).

A.3 Laplacian

For a given Riemannian Manifold X without boundary with metric g and local coordinates

x1, · · · , xn the Laplace-Beltrami operator is given by

∆g =
∑
i,j

1√
|g|
∂ig

ij
√
|g|∂j

where gij is the i, j-th entry of the inverse of the metric g and |g| is the determinate of

the metric tensor. The volume form is given by dV ol =
√
|g|dx1 · · · dxn. Note that ∆g is
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essentially self adjoint since for u, v ∈ S (X),

∫
X

∆guv̄ dV ol =

∫
X

∑
i,j

( 1√
|g|
∂ig

ij
√
|g|∂ju

)
v̄
√
|g|dx1 · · · dxn

=

∫
X

∑
i,j

(
∂ig

ij
√
|g|∂ju

)
v̄dx1 · · · dxn

= −
∫
X

∑
i,j

(
gij
√
|g|∂ju

)
∂iv̄dx1 · · · dxn

= −
∫
X

∑
i,j

∂ju
(√
|g|gij∂iv̄

)
dx1 · · · dxn

=

∫
X

∑
i,j

u
(
∂j
√
|g|gij∂iv̄

)
dx1 · · · dxn

=

∫
X

u
∑
i,j

1√
|g|
(
∂j
√
|g|gij∂iv̄

)√
|g|dx1 · · · dxn

=

∫
X

u∆gv dV ol

since g is symmetric. In the multi-warped product case in this thesis the metric is

g = dx2 + A−(x)2dθ+
2 + A+(x)2dθ−

2.

Then,

∆g = ∂2
x +

A′− + A′+
A−A+

∂x + A+(x)−2∂2
θ+

+ A−(x)−2∂2
θ−

and

dV ol = A+(x)A−(x)dxdθ+dθ−.

There are two issues with this Laplacian. There is a first order derivative term and when we

integrate we need to be careful to include the volume form. We solve both of these issues by

conjugating by T = (A1(x)A2(x))1/2 and studying the operator ∆̃ = T∆T−1 instead of ∆.

After the conjugation

∆̃ = ∂2
x + A−(x)−2∂2

θ+
+ A+(x)−2∂2

θ− + V1(x)
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for a potential term V1(x). This eliminates the first order derivative at the cost of an added

potential term V1(x). However, this term V1(x) in our case does not harm the local smoothing

estimates. The removal of the first order derivative and volume form make studying ∆̃ easier.

We will go over why we can study ∆̃ instead of ∆. Note that T : L2(X, dV ol) →

L2(X, dxdθ−dθ+) is an isometry since

∫
X

|u|2dV ol =

∫
X

|u|2A+(x)A−(x)dxdθ−dθ+ =

∫
X

|Tu|2dxdθ−dθ+.

However, T is not an isometry on Hs norms when s 6= 0. We do not have ||Tu||Hs(X,dxdθ−dθ+) =

||u||Hs(X,dV ol), since x-derivatives do hit the (A+(x)A−(x))1/2 terms. However, since g is

asymptotically Euclidean, there are some positive constants CT and CT−1 such that

||Tu||Hs(X,dxdθ−dθ+) ≤ CT ||u||Hs(X,dV ol) and ||ũ||Hs(X,dxdθ−dθ+) ≤ CT−1||T−1ũ||Hs(X,dV ol) for

u ∈ Hs(X, dV ol) and ũ ∈ Hs(X, dxdθ−dθ+). Now, suppose ũ solves


(Dt − ∆̃)ũ(t, x) = 0

ũ(0, x) = ũ0(x)

(A.3.1)

for ũ0(x) ∈ S (X, dxdθ−dθ+). If u = T−1ũ, then

0 = (Dt − ∆̃)ũ(t, x) = (TDtT
−1 − T∆T−1)ũ = T (Dt −∆)T−1Tu = T (Dt −∆)u.

and u0(x) = T−1ũ0(x) ∈ H1/2(X, dV ol). Therefore u is a solution to


(Dt −∆)u(t, x) = 0

u(0, x) = u0(x)

(A.3.2)
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This implies that if we can show

∫ T

0

||〈x〉−3/2ũ||2H1(X,dxdθ−dθ+)dt ≤ C||ũ0||2H2/3(X,dxdθ−dθ+)

for some constant C > 0 then,

∫ T

0

||〈x〉−3/2u||2H1(X,dV ol)dt ≤ C ′||u0||2H2/3(X,dV ol)

for some constants C ′ > 0, which is the estimate in Theorem 4.2.1. Hence, we can get the

desired local smoothing estimates by studying solutions to (A.3.1).

A.4 Local Smoothing on R from Propagation

Theorem A.4.1. Suppose u0(x) ∈ C∞c (R) and u(t, x) solves


(Dt +Dm

x )u(t, x) = 0

u(0, x) = u0(x)

where Dt = 1
i
∂t and Dm

x = 1
im
∂mx . Suppose I is a compact interval. Then, for every T > 0

there exists a constant CT such that

∫ T

0

∫
I

|〈Dx〉(m−1)/2u(t, x)|2dxdt ≤ CT ||u0||2L2 .

Proof. Suppose u0(x) ∈ C∞c (R) and u(t, x) solves


(Dt +Dm

x )u(t, x) = 0

u(0, x) = u0(x)

where Dt = 1
i
∂t and Dm

x = 1
im
∂mx . Let I = [Ia, Ib] where Ib > Ia and supp (u0) ⊆ [Ua, Ub]

where Ub > Ua. Let χ+ ∈ C∞c ([1/2, 2]) ,χ− ∈ C∞c ([−2,−1/2]) and χ ∈ C∞c ([−1, 1]) such that
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0 ≤ χ+, χ−, χ ≤ 1 and

1 =
∞∑
j=0

χ+(ξ/2j) +
∞∑
j=0

χ−(ξ/2j) + χ.

Define χ+
j (ξ) = χ+(ξ/2j) and χ−j (ξ) = χ−(ξ/2j). Let u+

j = F−1(χ+
j û), u−j = F−1(χ−j û),

u+
j,0 = F−1(χ+

j û0), u−j,0 = F−1(χ+
j û0), ũ = F−1(χû) and ũ0 = F−1(χû0) where we take the

Fourier transform in x only. Then,

u(t, x) =
∞∑
j=0

u+
j +

∞∑
j=0

u−j + ũ

and

u0(x) =
∞∑
j=0

u+
j,0 +

∞∑
j=0

u−j,0 + ũ0.

This division ensures that û+
j has support on [1/2(2j), 2(2j)]. We will focus on u+

j and the case

of u−j will follow similarly. Note that u+
j solves (Dt +Dm

x )u+
j (t, x) = 0 with initial condition

u+
j (0, x) = u+

j,0(x). Let

Aj =

∫ T

0

∫
I

|〈Dx〉(m−1)/2u+
j (t, x)|2dxdt.

Then,

Aj =

∫ T

0

∫
I

|〈Dx〉(m−1)/2u+
j (t, x)|2dxdt

=
1

2π

∫ T

0

∫
I

∣∣∣∣∣
∫
R
eixξ〈ξ〉(m−1)/2û+

j (t, ξ)dξ

∣∣∣∣∣
2

dxdt

=
1

2π

∫ T

0

∫
I

∣∣∣∣∣
∫
R
eixξ(1 + ξ2)(m−1)/4e−itξ

m

û+
j,0(ξ)dξ

∣∣∣∣∣
2

dxdt.

Now û+
j,0 is supported near ξ = 2j. Specifically, supp (û+

j,0) ⊆ [1
2
2j, 2(2j)]. Let h = 1/2j, so
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that û+
0 is supported near h−1 and supp (û+

0 ) ⊆ [1
2
h−1, 2h−1]. Then,

Aj =
1

2π

∫ T

0

∫
I

∣∣∣∣∣
∫
R
eixξ(1 + ξ2)(m−1)/4e−itξ

m

û+
j,0(ξ)dξ

∣∣∣∣∣
2

dxdt

≤ 1

2π
(1 + 4(h−1)2)(m−1)/2

∫ T

0

∫
I

∣∣∣∣∣
∫
R
eixξe−itξ

m

û+
j,0(ξ)dξ

∣∣∣∣∣
2

dxdt

=
1

2π
(1 + 4(h−1)2)(m−1)/2

∫ T

0

∫
I

∣∣∣∣∣
∫
R

∫
R
eixξe−itξ

m

e−iyξu+
j,0(y)dydξ

∣∣∣∣∣
2

dxdt

=
1

2π
(1 + 4(h−1)2)(m−1)/2

∫ T

0

∫
I

∣∣∣∣∣
∫
R

∫
R
ei[(x−y)ξ−tξm]u+

j,0(y)dydξ

∣∣∣∣∣
2

dxdt.

Take χ0 ∈ C∞c such that χ0 = 1 on support of χ+, 0 ≤ χ0 ≤ 1, and supp (χ0) = [1/3, 3]. Let

χj,0(ξ) = χ0(ξ/2j) = χ0(hξ). Then,

Aj ≤
1

2π
(1 + 4(h−1)2)(m−1)/2

∫ T

0

∫
I

∣∣∣∣∣
∫
R

∫
R
ei[(x−y)ξ−tξm]u+

j,0(y)dydξ

∣∣∣∣∣
2

dxdt

=
1

2π
(1 + 4(h−1)2)(m−1)/2

∫ T

0

∫
I

∣∣∣∣∣
∫
R

∫
R
ei[(x−y)ξ−tξm]χj,0(ξ)u+

j,0(y)dydξ

∣∣∣∣∣
2

dxdt

=
1

2π
(1 + 4(h−1)2)(m−1)/2

∫ T

0

∫
I

∣∣∣∣∣
∫
R

∫
R
ei[(x−y)ξ−tξm]χj,0(ξ)dξu+

j,0(y)dy

∣∣∣∣∣
2

dxdt.

The introduction of χ0 is so that we can examine the integral kernel

B1 =

∫
R
ei[(x−y)ξ−tξm]χj,0(ξ)dξ.

Set ξ = η/h. Then,

B1 =
1

h

∫
R
e
i
h

[(x−y)η−tηm/hm−1]χj,0(η/h)dη

=
1

h

∫
R
e
i
h
ϕχ0(η)dη

for ϕ = [(x− y)η − tηm/hm−1]. Now, ϕη = 0 when η = h( (x−y)
mt

)m−1. Take a smooth cutoff
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function χ̃0 such that χ̃0 = 1 on supp (χ0), 0 ≤ χ̃0 ≤ 1 and supp (χ̃0) = [1/4, 4].

B1 =
1

h
χ̃0

(
h

(
(x− y)

mt

)m−1
)∫

R
e
i
h
ϕχj,0(η/h)dη

+
1

h

(
1− χ̃0

(
h

(
(x− y)

mt

)m−1
))∫

R
e
i
h
ϕχj,0(η/h)dη

=
1

h
χ̃0

(
h

(
(x− y)

mt

)m−1
)∫

R
e
i
h
ϕχ0(η)dη +O(h∞).

This follows from rapid decay as h→ 0 since ϕη 6= 0 on the support of

(
1− χ̃0

(
h
((x− y)

mt

)m−1
))
χ0(η).

Using the calculations for B1 gives

Aj ≤
1

2π
(1 + 4(h−1)2)(m−1)/2

∫ T

0

∫
I

∣∣∣∣∣
∫
R

∫
R
ei[(x−y)ξ−tξm]χj,0(ξ)dξu+

j,0(y)dy

∣∣∣∣∣
2

dxdt

≤ 1

2π
(1 + 4h−2)(m−1)/2

∫ T

0

∫
I

∣∣∣∣∣
∫
R

1

h
χ̃0

(
h

(
(x− y)

mt

)m−1
)
u+
j,0(y)dy

∣∣∣∣∣
2

dxdt+O(h∞)||u+
j,0||2L2

=
1

2π
(1 +4h−2)(m−1)/2

∫ T

0

∫
R

∣∣∣∣∣
∫
R

1

h
χI(x)χ̃0

(
h

(
(x− y)

mt

)m−1
)
u+
j,0(y)dy

∣∣∣∣∣
2

dxdt+O(h∞)||u+
j,0||2L2

where χI(x) = 1 for x ∈ I and χI = 0 for x /∈ I.

The issue here is that uj,0 does not have compact support. Let Φ ∈ C∞c such that Φ(x) = 1

on [Ua, Ub] and supp (Φ) = [Ua − ε, Ub + ε] for ε > 0 small and Φ̃ ∈ C∞c such that Φ̃ = 1 on

supp (Φ),supp (Φ̃) = [Ua − 2ε, Ub + 2ε] and 0 ≤ Φ, Φ̃ ≤ 1. Let

B2 =

∫
R

1

h
χI(x)χ̃0

(
h

(
(x− y)

mt

)m−1
)

(1− Φ̃(y))uj,0(y)dy.

110



Then,

B2 =

∫
R

1

h
χI(x)χ̃0

(
h

(
(x− y)

mt

)m−1
)

(1− Φ̃(y))

∫
R

∫
R
eiyξχ+(hξ)e−izξu0(z)dzdξdy.

Let ξ = η/h. Then,

B2 =

∫
R

1

h
χI(x)χ̃0

(
h

(
(x− y)

mt

)m−1
)

(1− Φ̃(y))

∫
R

∫
R

1

h
ei(y−z)η/hχ+(η)Φ(z)u0(z)dzdηdy

=

∫
R

1

h
χI(x)χ̃0

(
h

(
(x− y)

mt

)m−1
)∫

R

(∫
R

1

h
ei(y−z)η/h(1− Φ̃(y))Φ(z)χ+(η)dη

)
u0(z)dzdy

= O(h∞)||u0||2L2

due to rapid decay as h→ 0, since (1− Φ̃(y))Φ(z) = 0 when y = z. Hence,

Aj ≤
1

2π
(1 + 4h−2)(m−1)/2

∫ T

0

∫
R

∣∣∣∣∣
∫
R

1

h
χI(x)χ̃0

(
h

(
(x− y)

mt

)m−1
)

Φ̃(y)uj,0(y)dy

∣∣∣∣∣
2

dxdt

+O(h∞)||u+
j,0||2L2 +O(h∞)||u0||2L2 .

For χI(x)χ̃0

(
h
( (x−y)

mt

)m−1
))

Φ̃(y)uj,0(y) 6= 0 we need h( (x−y)
mt

)1/(m−1) ∈ [1/4, 4]. Hence, (x−

y) ∈ [(h−1/4)m−1t, (4h−1)m−1t]. Since Φ̃ 6= 0 for y ∈ [Ua − 2ε, Ub + 2ε] we need x ∈

[(h−1/4)m−1t+ (Ua − 2ε), (4h−1)m−1t+ (Ub + 2ε)]. This tells us that

χI(x)χ̃0

((
h

(x− y)

mt

)m−1
))

Φ̃(y)uj,0(y) 6= 0

from t = Ia−(Ub+2ε)
(4h−1)m−1 to t = Ib−(Ua−2ε)

( 1
4
h−1)m−1 . This implies that the integral with respect to t is
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non-zero for at most C/(h−1)m−1 time for a constant C.

Aj ≤
1

2π
(1 + 4h−2)(m−1)/2

∫ C
(h−1)m−1

0

∫
R

∣∣∣∣∣
∫
R

1

h
χI(x)χ̃0

(
h

(
(x− y)

mt

)m−1
)

Φ̃(y)uj,0(y)dy

∣∣∣∣∣
2

dxdt

+O(h∞)||uj,0||2L2 +O(h∞)||u0||2L2

≤ 1

2π
(1 + 4(h−1)2)(m−1)/2 C ′

(h−1)m−1
||uj,0||2L2 +O((1/2j)∞)||u0||2L2

≤C ′′||u+
j,0||2L2 +O((1/2j)∞)||u0||2L2

as j →∞ and C ′ and C ′′ are positive constants that can be chosen independent of j. These

estimates will hold for ξ < 0. We have

A−j =

∫ T

0

∫
I

|〈Dx〉(m−1)/2u−j (t, x)|2dxdt

≤ C ′′||u+
j,0||2L2 +O((1/2j)∞)||u0||2L2 .

So,

∫ T

0

∫
I

|〈Dx〉(m−1)/2u(t, x)|2dxdt ≤
∞∑
j=0

Aj +
∞∑
j=0

A−j +

∫ T

0

∫
I

|〈Dx〉(m−1)/2ũ(t, x)|2dxdt

≤ 2
∞∑
j=0

(
C ′′||uj,0||2L2 +O((1/2j)∞)||u0||2L2

)
+

∫ T

0

∫
I

|〈Dx〉(m−1)/2ũ(t, x)|2dxdt.

Now, 2C ′′
∑

j ||uj,0||2L2 ≤ K||u0||2L2 and
∑∞

j=0O((1/2j)∞)||u0||2L2 ≤ K ′||u0||2L2 for positive

constants K and K ′. Additionally

∫ T

0

∫
I

|〈Dx〉(m−1)/2ũ(t, x)|2dxdt ≤ 2T ||u0||2L2 ,

since |〈ξ〉(m−1)/2 ˆ̃u| ≤ |û|. Combining the estimates gives

∫ T

0

∫
I

|〈Dx〉(m−1)/2u(t, x)|2dxdt ≤ CT ||u0||2L2
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for a positive constant CT as desired.

A.5 Information on the Potentials Vp,n

We will start by showing that the set {x|V ′p,n(x) = 0 for some (p, n) ∈ Z× Z \ (0, 0)} is

dense in the interval [−ε, ε] where Vp,n(x) is defined in (4.3.1).

A.5.1 Critical Points are Dense in [−ε, ε]

Let

xp,n =

(
p2/(2m−1) − n2/(2m−1)

p2/(2m−1) + n2/(2m−1)

)
.

Note that V ′p,n(εxp,n) = 0. The set {xp,n|(p, n) ∈ Z × Z \ (0, 0)} is dense in [−1, 1]. Let

x ∈ [−1, 1], δ > 0, and k = 2/(2m− 1).

If x = −1, then |x− xn,0| = 0 < δ for p 6= 0. If x = 1, then |x− xp,0| = 0 < δ for n 6= 0.

If x ∈ (−1, 1), let p = An. Then,

|x− xp,n| = |((Ak + 1)x− (Ak − 1))/(Ak + 1)| = |(Ak(x− 1) + (x+ 1))/(Ak + 1)|.

Then Ak = x+1
1−x > 0 gives |x− xp,n| = 0. However, x+1

1−x could be irrational.

Let |B − x+1
1−x | <

δ
2
. Then,

|(B(x− 1) + (x+ 1))/(Ak + 1)| <
∣∣∣∣ (x+ 1

1− x
+
δ

2

)
(x− 1) + (x+ 1)

∣∣∣∣ ≤ ∣∣∣∣δ2(x− 1)

∣∣∣∣ < δ.

Now, f(x) = xk is a continuous function on (0,∞) and rational numbers are dense in R. This

implies for a given δ > 0 that for all δ′ > 0 there exists q, r ∈ Z such that |(x+1
1−x)1/k− q/r| < δ′

and for δ′ > 0 sufficiently small, we have |(x+1
1−x)− (q/r)k| < δ/2. So, by choose q, r so that δ′

is sufficiently small we get

|x− xq,r| = |((Ak + 1)x− (Ak − 1))/(Ak + 1)| <
∣∣∣∣(x+ 1

1− x
− δ/2

)
(x− 1) + (x+ 1)

∣∣∣∣ < δ.
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Multiplying xp,n by ε completes the proof that

{x|V ′p,n(x) = 0 for some (p, n) ∈ Z× Z \ (0, 0)}

is dense in [−ε, ε].

A.5.2 Nature of the critical points

Recall from Figure 2.3 we discussed the level sets of the Hamiltonian. In this case our

Hamiltonian will be given by ξ2 + h2Vp,n(x). We can look at level sets if we fix the values of

p and n. Figure A.3 is an sketch of when the Hamiltonian is 0 for p = 0 and n = 0. Notice

that this is the situation where we have degenerate unstable critical points. However, we can

have the situation where p, n 6= 0.

In Figure A.4 we have the situation when p = n and when n� p. In this situation both

of the critical points will be non-degenerate unstable critical points. However, when n� p

we approach the degenerate unstable critical point given in Figure A.3. This combination

of the behavior when n/p→∞ and when p = n makes the resolvent estimate difficult. We

expound on this in the next subsection.

Lets consider the case where m = 2 and we will use the calculations from Subsection

A.5.3. In this situation the level sets given in Figure A.3 and A.4 are roughly given by

ξ2 = h(2−2η)2/3(x− xp,n)2 + (x− xp,n)4 where h−2 = p2 + n2 and p ∼ h−η where n > p. Near

the critical point the level sets are approximately given by ±ξ ≈ h(2−2η)/3(x− xp,n) if h 6= 0.

What makes the microlocal resolvent estimate in (4.4.12) hard is that while the critical point

is non-degenerate, as long as η > 0, the critical point acts like a degenerate point as h→ 0.

A.5.3 Estimates of the Derivatives of the potential

In this section we show some estimates on the higher order derivatives of the potential.

These estimates will not be used to get the local smoothing result, however they provide
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ε−ε x

ξ

p = 0 n = 0

Figure A.3: Level sets of ξ2 + h2Vp,n(x) for p = 0 and n = 0

ε−ε x

ξ

n� p p = n

Figure A.4: Level sets of ξ2 + h2Vp,n(x) for p = n and n� p

a heuristic for why this estimate is tough. They also show why we will need to employ a

two-parameter calculus to get the final estimate.

Recall xp,n = ε

(
p2/(2m−1)−n2/(2m−1)

p2/(2m−1)+n2/(2m−1)

)
is the critical point of of V ′(x). Suppose h is sufficiently

small with h2 = 1
p2+n2 and |n| ≤ |p| and k > 1 is an integer. If |n| ≥ h−η with 1− δ > η > 0
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for δ > 0 small, then there exists a C ′ > 0 independent of h (once h is sufficiently small) such

that

|h2V (k)
p,n (xp,n)| ≥ C ′h(2−2η)(2m−k)/(2m−1). (A.5.1)

If |n| ≤ h−η then there exists a C > 0 independent of h such that

|h2V (k)
p,n (xp,n)| ≤ Ch(2−2η)(2m−k)/(2m−1). (A.5.2)

We will show these estimates and then explain why (A.5.1) is an issue to proving the local

smoothing estimate.

V (k)
p,n (x) = −

(
2m!

(2m− k)!

)
p2(x− ε)2m−k −

(
2m!

(2m− k)!

)
n2(x+ ε)2m−k.

At the critical point

V (k)
p,n (xp,n)

=

(
− 2m!

(2m− k)!
ε2m−k

)(
p2

(
−2n2/2m−1

p2/2m−1 + n2/2m−1

)2m−k

+ n2

(
2p2/2m−1

p2/2m−1 + n2/2m−1

)2m−k
)
.

Replacing the constants dependent on ε and k and m with C we get

V (k)
p,n (xp,n) = C

(
n2p(4m−2k)/(2m−1) + (−1)2m−kp2n(4m−2k)/(2m−1)

(p2/(2m−1) + n2/(2m−1))2m−k

)

First, let |n| ≥ h−η. Note that |p| ∼ 1/h, but the exact relationship is dependent on n.

However, 1/h ≥ |p| ≥ 1/(2h) for all |n| ≤ |p|. Then,

|V (k)
p,n (xp,n)| ≥

∣∣∣∣C1h
−2ηh−(4m−2k)/(2m−1) + (−1)2m−kC2h

−2h−η(4m−2k)/(2m−1)

(2h−2/(2m−1))2m−k

∣∣∣∣
≥ C ′(h−2h−η(4m−2k)/(2m−1))(h(4m−2k)/(2m−1))

≥ C ′h−2h(2−2η)(2m−k)/(2m−1)
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for h sufficiently small and constants C1, C2 and C ′ since the h−2h−η(4m−2k)/(2m−1) term

dominates as h→ 0 because k > 1. This gives the estimate in (A.5.1).

Now, let |n| ≤ h−η. Then,

V (k)
p,n (xp,n) ≤ C

h−2ηh−(4m−2k)/(2m−1) + h−2h−η(4m−2k)/(2m−1)

(h−2/(2m−1))2m−k ,

≤ C ′h−2h−η(4m−2k)/(2m−1)h(4m−2k)/(2m−1)

≤ C ′h−2h(2−2η)(2m−k)/(2m−1).

for positive constants C and C ′.

Recall in Section 3.3 and (3.3.14) that we discussed a commutator argument with [aw, Q1]

where Q1 = (hDx)
2 + V − h2V1 for V and V1. Then [aw, Q1] = h{a, q1}w + h3rw where

r is dependent on the odd order derivatives of a and q1, where q1 is the symbol for Q1.

In the multi-warped product case here, we will have the Q = (hDx)
2 + h2Vp,n + O(h2)

where −Vp,n = p2(x − ε)2m + n2(x + ε)2m. If we consider the case where m = 2, then

h3r ∼ h3(∂3
ηah

2V (3)) ∼ h2/3(h2V (3)). From [CW13], we expect and will show that the optimal

lower bound is 〈h{a, q1}wu, u〉 ≥ h4/3||u||2L2 . However, from (A.5.1)

|h2/3(h2V (3))| ≥ h2/3h(1−η)2/3 > h4/3

if 1 > η > 0. This makes estimating the higher order derivatives difficult and is the main

challenge in proving Theorem 4.2.2 for m ≥ 2. The case of m = 2 was possible because we

were able show

h2V ′p,n(x)(x− xp,n) ≥ C

(
E1

E3

(x− xp,n)2 + (x− xp,n)4

)

in Lemma 4.4.26. This allowed us to bound the error term by h2V ′p,n(x)(x− xp,n) rather than

just h4/3. The key to this estimate was handling the cubic term of Vp,n when doing a Taylor

expansion, since it can have the wrong sign.
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